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The non-negative solution to an underdetermined linear system can be uniquely recovered sometimes,
even without imposing any additional sparsity constraints. In this paper, we derive conditions under
which a unique non-negative solution for such a system can exist, based on the theory of polytopes.
Furthermore, we develop the paradigm of combined sparse representations, where only a part of the
coefficient vector is constrained to be non-negative, and the rest is unconstrained (general). We analyze
the recovery of the unique, sparsest solution, for combined representations, under three different cases
of coefficient support knowledge: (a) the non-zero supports of non-negative and general coefficients
are known, (b) the non-zero support of general coefficients alone is known, and (c) both the non-zero
supports are unknown. For case (c), we propose the combined orthogonal matching pursuit algorithm
for coefficient recovery and derive the deterministic sparsity threshold under which recovery of the
unique, sparsest coefficient vector is possible. We quantify the order complexity of the algorithms, and
examine their performance in exact and approximate recovery of coefficients under various conditions
of noise. Furthermore, we also obtain their empirical phase transition characteristics. We show that
the basis pursuit algorithm, with partial non-negative constraints, and the proposed greedy algorithm
perform better in recovering the unique sparse representation when compared to their unconstrained
counterparts. Finally, we demonstrate the utility of the proposed methods in recovering images corrupted
by saturation noise.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

We investigate the problem of recovering non-negative and
combined sparse representations from underdetermined linear
models. The system of linear equations with the constraint that
the solution is non-negative can be expressed as

y = Xα, where α � 0, (1)

where y ∈ R
M is the data vector, α ∈ R

Kx is the non-negative so-
lution (coefficient vector) and X ∈ R

M×Kx is the dictionary with
Kx > M . When only a part of the solution is constrained to be
non-negative and the rest is unconstrained (general), we obtain the
combined representation model,

y = Xα + Dβ, where α � 0. (2)

Here, the coefficient vector β ∈ R
Kd is unconstrained, and X ∈

R
M×Kx and D ∈ R

M×Kd are the sub-dictionaries for the non-
negative and general representations respectively. We denote the
combined coefficient vector as δ = [αT βT ]T , and the combined
dictionary as G = [X D]. We assume that G is overcomplete with
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Kx + Kd > M , and the columns of the dictionaries are normalized
to have unit �2 norm. The sparsest solutions to (1) and (2) are
obtained by minimizing the �0 norm, the number of non-zero ele-
ments, of the corresponding non-negative coefficient vector (α) or
the combined coefficient vector (δ). In both the cases, the unique
minimum �0 norm solution, when it exists, will be referred to as
ML0 solution. In this paper, we focus on obtaining deterministic
guarantees for recovery of the ML0 solutions to the linear systems
(1) and (2), using both convex and greedy algorithms, based on the
properties of the dictionaries.

1.1. Applications

Some of the applications of the non-negative representation
model in (1), and the combined model in (2) are in image recov-
ery [1], automatic speech recognition using exemplars [2], protein
mass spectrometry [3], astronomical imaging [4], spectroscopy [5],
source separation [6], clustering/semi-supervised learning of data
[7,8], sparse portfolio optimization [9] to name a few. In particu-
lar, we will briefly mention two applications where the proposed
combined model is directly relevant.

1.1.1. Signal/image recovery
Natural image patches can be sparsely represented using prede-

fined and learned dictionaries and this property is used favorably
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in many image recovery applications such as denoising, inpainting,
super-resolution and compressed sensing. When the representation
of the image has two components, which are sparse in two distinct
dictionaries, and when the sign of the coefficients in one of the
dictionaries is known, the proposed combined sparse models can
be used to recover the coefficients and hence the image itself. One
such example application for the proposed model is demonstrated
in Section 5.4, where we recover images corrupted by saturation
noise. Another potential application is in compressed recovery of
sparse signals, when the signs of a subset of the coefficient vector
are known. The utility of the combined model in this application
is illustrated in Sections 5.1, 5.2 and 5.3.

1.1.2. Sparse Markowitz portfolio optimization
In portfolio optimization, the goal is to select assets for a given

capital that balances high returns with low risk. Recently, it has
been proposed that this can be solved as a sparse optimization
problem with appropriate constraints [9]. In this context, a nega-
tive coefficient corresponds to a short-position on the portfolio and
a non-negative coefficient corresponds to a no-short position. When
certain positions are mandated to be no-shorts because of possi-
ble government or market regulations, the combined model can be
effectively used to select an optimal portfolio.

1.2. Prior work

For the non-negative representation model in (1), a sufficiently
sparse ML0 solution can be recovered by minimizing the �1 norm
of α, using the non-negative version of the basis pursuit (BP) algo-
rithm [10], which we refer to as NN-BP. The optimization program
can be expressed as

min
α

1T α subject to y = Xα, α � 0. (3)

The conditions on X under which the recovery of ML0 solution us-
ing (3) is possible have been derived based on the neighborliness
of polytopes [11–13], and the non-negative null-space property
[14]. A non-negative version of the greedy orthogonal matching
pursuit (OMP) algorithm [15], which we will refer to as NN-OMP,
for recovering the coefficients has also been proposed [16]. If the
set

{α|y = Xα, α � 0} (4)

contains only one solution, we can use any variational function
instead of the �1 norm in order to obtain the unique non-negative
solution [12,13,16]. In particular, the solution can be obtained by
using the non-negative least squares (NNLS) algorithm [3,17].

A major part of our work investigates the combined sparse rep-
resentation model introduced in (2), where only a part of the
sparse coefficient vector is constrained to be non-negative. We
consider the deterministic sparsity thresholds, i.e., the maximum
number of non-zero coefficients possible in the ML0 solution, such
that the ML0 solution can be uniquely recovered. To the best of
our knowledge, such an investigation has not been reported so
far in the literature. However, when both α and β are uncon-
strained general sparse vectors, the sparsity thresholds for recovery
of the ML0 solution have been presented in [18,19]. By consider-
ing the coherence parameters of X and D separately, the authors
in [18] show that an improvement up to a factor of two can be
achieved in the deterministic sparsity threshold when compared
to considering X and D together as a single dictionary. Note that
deterministic sparsity thresholds provide guarantees that hold for
all sparsity patterns and non-zero values in the coefficient vectors.
Probabilistic or robust sparsity thresholds, that hold for most spar-
sity patterns and non-zero values in the coefficient vectors have
also been derived in [18], again for the case where α and β are

general sparse vectors. When this representation is approximately
sparse and corrupted by additive noise, theory and algorithms for
coefficient recovery are presented in [20].

1.3. Contributions

We present deterministic recovery guarantees for both the non-
negative and the combined sparse representation models given by
(1) and (2) respectively. Furthermore, we propose a greedy algo-
rithm for performing coefficient recovery in combined representa-
tions and derive deterministic sparsity thresholds for unique recov-
ery using �1 minimization and the proposed greedy algorithm.

For the non-negative model in (1), we derive the sufficient con-
ditions for (4) to be singleton based on the neighborliness prop-
erties of the quotient polytope corresponding to the dictionary X.
Similar analyses reported in [12,13] assume that the dictionary X
is obtained from a random ensemble and append a row of ones to
it, such that the row span of X contains the vector 1T . In contrast,
we do not assume any randomness on X and only require that its
row span intersects the positive orthant. We show that the spar-
sity threshold on α, for the set (4) to be singleton, is the same as
the deterministic sparsity threshold for recovering the ML0 solu-
tion of a general sparse representation. Whenever this threshold is
satisfied, �1-norm regularization in (3) can be replaced with any
variational function. Section 2 presents the analysis of the non-
negative representation model.

For the combined model in (2), we propose a variant of the
greedy OMP algorithm, the combined OMP (COMB-OMP) algo-
rithm, for performing coefficient recovery. We also consider an
�1 regularized convex algorithm, which we refer to as combined
BP (COMB-BP). We derive the deterministic sparsity thresholds for
recovering the ML0 solution using both the COMB-BP and COMB-
OMP algorithms. We show that a factor-of-two improvement in
the sparsity threshold, observed when α and β are general sparse
vectors [18], holds for recovery using the COMB-BP also. We also
show that such an improvement in the sparsity threshold can-
not be observed using the COMB-OMP algorithm, because of the
partial non-negativity constraint on the coefficient vector. Further-
more, we obtain the sparsity thresholds in the following cases of
coefficient support knowledge: (a) the non-zero support of both
α, β is known, and (b) non-zero support of β alone is known.
When analyzing case (b), we factor out the contribution of the
general representation component and arrive at conditions under
which �1-norm regularization in the resulting optimization can be
replaced with any variational function for the recovery of α. Sec-
tion 3 presents all the details in the analysis of the combined rep-
resentation model. As a final piece of our theoretical investigation,
we present the computational complexities of OMP, COMB-OMP,
BP and COMB-BP algorithms.

The performance of the COMB-BP and the COMB-OMP algo-
rithms is also analyzed using simulations. The dictionary G is ob-
tained from a Gaussian ensemble and the non-zero coefficients are
obtained either from a uniform distribution or from a random sign
distribution (±1). It is shown that both COMB-BP and COMB-OMP
respectively perform better than their unconstrained counterparts,
the BP and the OMP, particularly as the Kx becomes larger. The
algorithms show a similar behavior when recovering the sparse
coefficients from noisy signals. Furthermore, the empirical phase
transition characteristics of the proposed algorithms are provided
and their utility in a real-world application of recovering images
from saturation noise is demonstrated.

1.4. Notation

Lowercase boldface letters denote column vectors and upper-
case boldface denote matrices, e.g., a and A denote a vector and
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