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The component method is applied to define estimators of the periods for Gaussian periodically correlated
random processes (mathematical model of stochastic oscillations). The properties of these period
estimators are obtained using some small parameter method and the rate of convergence is shown to be
optimal. Specific results for the simplest models of periodically correlated process are presented. Finally
the method is illustrated with a simulated sequence and a real life vibration signal.
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1. Introduction

In signal processing, the analysis of the first moment behavior
is not always sufficient to detect periodicities hidden in the struc-
ture of the signal [7]. When the signal has a constant mean, we
should use the second order statistics. The second order periodic
nonstationarity of the random component is caused by stochas-
tic modulation of harmonic functions [1,2]. This modulation often
leads to wide band processes and cannot be characterized with
a spectral density function. Moreover the presence or absence of
periodicity properties in a signal cannot be determined only by
studying the behavior of the covariance function by time lag as
proposed in [3–5]. The stationary model is useless to determine
the periodicity in time of the covariance function since within
the stationary approach the time variability of the covariance is
ignored. The methods of hidden periodicity detection should test
the time changes of statistical properties. This main innovation is
proposed in [6,7] and developed in [8–10]. The statistics that char-
acterize periodic nonstationarity of a signal are set as principles of
searching for hidden periodicities [11–13].

The simplest model of hidden periodicity, the periodically cor-
related random real-valued process (PC process), also called in
the Signal Processing community as cyclostationary signal, ξ =
{ξ(t), t ∈ R} has by definition [14–16], a periodic mean func-
tion m(t) = E[ξ(t)] = m(t + θ) and a periodic covariance b(t, u) =
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E[ξ̄ (t)ξ̄ (t + u)] = b(t + θ, u) with the same period θ > 0. Here
ξ̄ (t) = ξ(t) − m(t). If

θ∫
0

∣∣m(t)
∣∣dt < ∞ and

θ∫
0

∣∣b(t, u)
∣∣dt < ∞,

then we may use the following Fourier series representations:

m(t) =
∑
k∈Z

mkeikωθ t = m0 +
∑
k∈N

(
mc

k cos(kωθ t) + ms
k sin(kωθ t)

)
,

b(t, u) =
∑
k∈Z

Bk(u)eikωθ t

= B0(u) +
∑
k∈N

(
Bc

k(u) cos(kωθ t) + Bs
k(u) sin(kωθ t)

)
where ωθ = 2π/θ , the terms Bk(u) are known as the covariance
components [1,2]. For the estimation of the characteristics, dif-
ferent methods can be used: the coherent method [15–17], the
component method [18], the least squares method [19] and linear
filtration method [2,20]. See also [6,7].

For the estimation of the period θ of the mean function of a PC
process, the cosine and sine Fourier transforms

m̂c
l (τ ) = 1

T

T∫
−T

ξ(t) cos(lωτ t)dt,

m̂s
l (τ ) = 1

T

T∫
−T

ξ(t) sin(lωτ t)dt,
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where ωτ = 2π/τ , τ is a test period and l > 0, have been analyzed
as functions of τ . When τ = θ and T = Nθ , the statistics m̂c

l (τ )

and m̂s
l (τ ) are unbiased estimators of respectively mc

l and ms
l .

Moreover, under the condition

lim|u|→∞ b(t, u) = 0, (1)

they are consistent [17,18]. The period estimators considered in [7]
are the arguments of the functionals for which the extreme values
are attained. Thus they are obtained as solutions of the nonlinear
stochastic equations

dm̂c(τ )

dτ
= 0, respectively

dm̂s(τ )

dτ
= 0.

The solutions are approximated by polynomial functions with a
small parameter that tends to zero as the realization length 2T
goes to the infinity. Under the condition (1) these estimators are
asymptotically unbiased and consistent. Here we will extend this
idea to the second order moment characterizations in order to
identify the stochastic recurrence of the processes. The method
proposed in [7] for the study of the solutions of nonlinear equation
is called small parameter method [22,23]. Notice that this method
combined with the likelihood method was successfully applied in
the parameter estimation problem for signals with additive noise
[23].

To estimate the period of a PC process with the maximum like-
lihood method [24] the problem could be parameterized using the
harmonic representation [15,16]

ξ(t) =
∑
k∈Z

ξk(t)eikωθ t, (2)

where ξk = {ξk(t), t ∈ R}, k ∈ Z, is a family of jointly stationary
complex valued processes. The period estimate in this case is ob-
tained by solving the likelihood equation and can be analyzed with
the small parameter method. Then taking into account the prior
knowledge about the probability structure of the PC process un-
der study, it can be shown that the most probable estimate of the
period is asymptotically unbiased and consistent. Nevertheless, at
the early stage of investigation the information on the probability
structure of the process is missing, that is the reason why we pre-
fer methods which are less efficient but which can be applied to
a larger class of processes [6,7]. Here we consider methods based
on the coherent and component estimators for PC process [16,17,
20]. There is a large amount of work dedicated to the problem
of estimation of the periods (frequencies) for a polyharmonic os-
cillation noised by a stationary random process (additive model)
ξ(t) = f (t)+η(t), where f (t) is an almost periodic function with a
finite number of harmonics [3–5,25,26]. In the case of white noise
the solution of the problem is trivial. Several significant solutions
are obtained in the case of colored noise under special conditions.
For instance in P. Stoica’s works [25,26] some simple formulae for
the asymptotic Cramér–Rao bound are obtained and it is shown
that the variance of the estimators is as small as T −3, where 2T
is the length of the observation of the process. These results are
based on the stationary approach thus cannot be applied to PC
process.

Synopsis: The paper is organized as follows. In Section 2 we in-
troduce and analyze the period estimator as an extreme point of
the cosine and sine covariance transform or/and the combination
of these transformations. The period estimates are investigated as
the solutions of nonlinear equations using the small parameter
method. The convergence in mean square is proved, and approx-
imations of the bias and the variances of the estimators are ob-
tained. Section 2 is devoted to the analysis of the covariance com-
ponent estimators, and in Section 3 we consider the correlation

estimators. In each section, the proposed methods are illustrated
with one of the simplest signal models: the multiplicative model.
The final section concerns the application of the developed method
to simulated data from a quadrature model, and to real-life vibro-
acoustic data.

2. Covariance functionals

2.1. Cosine and sine covariance functionals

In the following we assume that the mean of the signal is con-
stant, so does not contain any periodic component, thus E[ξ(t)] =
m for all t and for some known m ∈ R. Then we are going to con-
sider the cosine and sine covariance components Bc,s

l (u) and for
estimating the period we introduce the statistics

B̂c
l (u, τ ) = 1

T

T∫
−T

ξ̄ (t)ξ̄ (t + u) cos(lωτ t)dt, (3)

B̂ s
l (u, τ ) = 1

T

T∫
−T

ξ̄ (t)ξ̄ (t + u) sin(lωτ t)dt, (4)

and B̂0(u, τ ) = B̂c
0(u, τ )/2, where ξ̄ (t) = ξ(t) − m and l � 0. The

deterministic components of these transforms are equal to

Sc
l (u, τ ) = E

[
B̂c

l (u, τ )
] = 1

T

T∫
−T

b(t, u) cos(lωτ t)dt, (5)

Ss
l (u, τ ) = E

[
B̂ s

l (u, τ )
] = 1

T

T∫
−T

b(t, u) sin(lωτ t)dt. (6)

We know that

lim
T →∞ Sc,s

l (u, τ ) = Bc,s
l (u, τ )

=
{

Bc,s
k (u) if τ = lθ/k for some k > 0,

0 otherwise

and

lim sup
T →∞

T
∣∣Sc,s

l (u, τ ) − Bc,s
l (u, τ )

∣∣ < ∞.

If

θ∫
0

∣∣b(t, u)
∣∣dt < ∞,

then

b(t, u) = B0(u) +
∞∑

k=1

{
Bc

k(u) cos(kωθ t) + Bs
k(u) sin(kωθ t)

}
, (7)

the series converging in L1[0, θ] with respect to t , for each u. Thus,
taking into account the relations (5) and (6) we obtain

Sc
l (u, τ ) = 2B0(u) J0(lωτ T ) +

∞∑
k=1

Bc
k(u)

{
J0

(
(kωθ + lωτ )T

)
+ J0

(
(kωθ − lωτ )T

)}
,

Ss
l (u, τ ) =

∞∑
k=1

Bs
k(u)

{
J0

(
(kωθ − lωτ )T

) − J0
(
(kωθ + lωτ )T

)}
,
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