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a b s t r a c t

This paper presents improvements of a multivariable autoregressive (AR) model for

applications in operational modal analysis considering simultaneously the temporal

response data of multi-channel measurements. The parameters are estimated by using

the least squares method via the implementation of the QR factorization. A new noise rate-

based factor called the Noise rate Order Factor (NOF) is introduced for use in the effective

selection of model order and noise rate estimation. For the selection of structural modes, an

orderwise criterion called the Order Modal Assurance Criterion (OMAC) is used, based on

the correlation of mode shapes computed from two successive orders. Specifically, the

algorithm is updated with respect to model order from a small value to produce a cost-

effective computation. Furthermore, the confidence intervals of each natural frequency,

damping ratio and mode shapes are also computed and evaluated with respect to model

order and noise rate. This method is thus very effective for identifying the modal parameters

in case of ambient vibrations dealing with modern output-only modal analysis. Simulations

and discussions on a steel plate structure are presented, and the experimental results show

good agreement with the finite element analysis.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Modal analysis identification techniques give useful information on modal parameters to understand the dynamic
behavior of a structure [1]. However, in many cases which present nonlinear behaviors, the modal parameters have to be
estimated under operating conditions and very often the excitations cannot be measured [2]. We must thus consider the
operational modal analysis. Although the identification technique can be conducted both in the frequency [3] or time [4–6]
domains, it is seen that the time domain is more suitable for operational modal analysis and can be classified into two
groups. The first group lies in the fitting of response correlation functions, including the Ibrahim Time Domain (ITD)
method [7], the Least Squares Complex Exponential (LSCE) method [8], the Covariance-driven Stochastic Subspace
Identification (SSI-COV) method [9], and several modified versions of these methods for more suitable applications,
particularly under harmonic excitations [10–13]. Other methods, based on parametric models, involve choosing a
mathematical model to idealize the structural dynamic responses, including AutoRegressive Moving Average (ARMA) and
AutoRegressive (AR) models [14–18]. For these autoregressive methods, a system identification algorithm is needed for
estimating the model parameters. Among them, the Prediction Error Method (PEM) [19] is a common technique based on
either the least squares estimate or on the Gauss–Newton iterative search. When the mode identification is necessary,
multiples sensors have to be simultaneously recorded, and several applications of the multivariate AR model can be found
using the ordinary least squares in the form of normal equations [20–22] or the Levinson algorithm [23]. The PEM iterative
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method, generally used to search for minimization, requires intensive computation and initial start-up values which are
normally calculated using the least squares method. Furthermore, in some cases, the local minimization problem poses a
big challenge [19].

In this paper, the multivariate autoregressive model is expressed in a convenient fashion for computation. The QR
factorization gives an easy, fast and well-conditioned formulation for the least squares estimate of model parameters, and
can be effectively updated with respect to the model order. A new factor based on the separation and evolution of the
signal and noise is developed for the model order selection and noise rate estimation. The modal parameters are derived
using the eigen-decomposition of the state matrix. An orderwise version of the correlation criterion called the Order Modal
Assurance Criterion (OMAC) is defined for a user-friendly selection of modes. For interest on uncertainty in the parameter
estimates, the confidence intervals for each modal parameter are computed. Finally, the method is applied both on
simulated and experimental data of a steel plate in comparison to finite element method.

2. Vector-autoregressive model and its order updating

In operational modal analysis, we assume that the excitation is unknown. Since the modal analysis is conducted by
using several d channels of measurements synchronized for data acquisition at sampling period Ts, a multivariate
autoregressive model of pth order and dimension d can be utilized to fit the measured data [14,19].

yðtÞ ¼KzðtÞþeðtÞ ð1Þ

where K¼ ½�A1 �A2 � � � �Ap � of size d� dp is the parameters matrix, Ai of size d�d is the matrix of parameters

relating the output y(t� i) to y(t), z(t) of size dp�1 is the regressor for the output vector y(t), zðtÞT ¼

½ yðt�1ÞT yðt�2ÞT � � � yðt�pÞT �, y(t� i) of size d�1 (i=1:p) is the output vector with delayed time i� Ts, e(t) of size

d�1 is the residual vector of all output channels considered as the error of model.
If N consecutive output vectors of the responses from y(t) to y(t+N�1) are taken into account, the model parameters

can be obviously estimated with the least squares method. The following section reports the solution of this least squares
problem by using of the well-known QR factorization [24–26]. It is summarized for better understanding as follows:

The N� dp+d data matrix is first constructed from available data:

K¼

zðtÞT yðtÞT

zðtþ1ÞT yðtþ1ÞT

. . . . . .

zðtþN�1ÞT yðtþN�1ÞT

2
66664

3
77775 ð2Þ

Nomenclature

Ai matrix of parameters relating the output
y(t� i) to y(t)

d vector dimension or number of sensors
D̂ estimated covariance matrix of the determi-

nistic part
e(t) the residual vector of all output channels
Ê estimated covariance matrix of the error part
fi natural frequency
I unity matrix
K data matrix
K1,2 subdivided data matrices
Kn added data columns matrix
L complex eigenvectors matrix
N number of available data samples
p model order
peff(com) efficient (computing) model order
Q orthogonal factor matrix of the QR factoriza-

tion
Qa Q factor of the added columns factorization
R upper-diagonal factor matrix of the QR factor-

ization
Ra R factor of the added columns factorization

Rij submatrices of R
R�ð��Þ22 factorized matrices of R22 factor of the order

updating
t time index
Ts sampling period
T1,2,3 R factor corresponding to added data
ui discrete complex eigenvalue
y(t� i) the output vector with time delay i� Ts

z(t) the regressor for the output vector y(t)
zi damping ratio
H real mode shapes matrix
li continuous complex eigenvalue
K model parameters matrix
p Pi number
P state matrix
W complex mode shapes matrix
(p) parameter at order p

^ estimated value
T matrix/vector transpose

¯
conjugated transpose

|| absolute value
Im(y) imaginary part
Re(y) real part
Trace(y) trace norm of a matrix
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