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This paper proposes an implementation for identifying sparse impulse responses. The new scheme
follows the approach in which the location of the channel response peak is estimated in the wavelet
domain. A short time-domain adaptive filter is then located about the estimated peak to identify the
sparse response. The primary purpose of this paper is to present an efficient design of such a system. The
use of a new block wavelet transform results in up to 70% less computational complexity and improved
peak detection, as compared to previous solutions. A new robust time-domain adaptive filtering location
and update scheme is also proposed that significantly reduces the occurrence of jitter problems and leads
to improved residual mean-square error performance. The behavior of the transform-domain adaptive
filter is analyzed, the Wiener solution is determined, and an accurate analytical model is obtained for
the mean-square deviation of the adaptive coefficients. Monte Carlo simulations show excellent echo
cancellation performance for typical ITU-T echo channels.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Sparse impulse responses are encountered in many applications
[1]. One important example is network echo cancellation. Bulk de-
lays in echo paths are often much longer than the actual echo path
impulse response. Typically, the bulk delay can be on the order of
128 ms [2]. Measurements in North America have shown that most
dispersion times (active impulse response length) are between 5–
7 ms [3]. Similar results were found in Europe. Thus, most of
the adaptive coefficients in a 128-ms delay line (1024 coefficients
for an 8 kHz sampling rate) will be zero. Hence, conventional
FIR adaptive filtering becomes inefficient, as long adaptive filters
are both slow to adapt and have noisy weights [4]. Several algo-
rithms have been proposed to exploit sparsity for improving sparse
response identification efficiency. A good overview of these tech-
niques can be found in [5]. One successful approach is to locate
the significant (active) samples of the unknown response [6–8,2,9].

The solution proposed in [6] is able to identify responses with
an unknown number of dispersive regions. However, it requires a
number of preset parameters, which makes optimal design diffi-
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cult. A least-squares (LS) solution based on active tap detection
is used with the NLMS algorithm in [7]. This scheme improves
previous solutions by the first author of [7] and others (see ref-
erences in [7]) for correlated input signals. A forgetting factor is
also included for tracking purposes. The computational complex-
ity is slightly greater than NLMS if two look-up tables are used.
It has been reported that the LS-based detection may fail for im-
pulse responses with large dynamic ranges [5]. The work in [8]
exploits the wavelet transform (WT) time hierarchy in sparse sys-
tem identification. The Haar-basis (HB) algorithm in [8] operates
using a control scale. All weights in this scale are adapted at each
adaptation interval (AI). Converged control weights larger than a
detection threshold activate the weights in the same time hierar-
chy at the other scales after each AI. A new AI then begins with
all active and control weights adapting. This approach works over
the entire impulse response and can be used to identify sparse
responses with more than one dispersive region. The weight acti-
vations are based on a fixed control scale. Thus, the algorithm may
fail for sparse responses that are not rich enough in frequency con-
tent [5]. Examples can be found among typical echo path responses
[3,9]. Two new algorithms based on the wavelet packet transform
have been recently proposed in [9,10] to identify sparse impulse
responses with any number of dispersive regions. The solutions
in [9,10] adaptively design the wavelet packet transform to match
the characteristics of the unknown response. Such solutions lead
to a reduced number of active weights as compared to [8]. This
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is largely due to the flexibility of the wavelet packet transform to
adjust to the frequency content of the unknown response.

Simpler solutions can be very effective when the unknown re-
sponse has a single dispersive region (as in typical network echo
cancellation [3]) or more than one dispersive region with small in-
tervals between any two consecutive regions. Two short adaptive
filters are operated sequentially in [2]. One adaptive filter operates
in a partial Haar transform domain to estimate the location of the
peak of the unknown response. The second filter is a short time-
domain adaptive filter centered about the estimated peak location,
which adapts to identify the nonzero portion of the echo path im-
pulse response. The algorithm uses the time hierarchy of the WT
to position the time-domain filter. Hence, two short adaptive fil-
ters can be used instead of one long adaptive filter. This results in
faster overall convergence and reduced computational complexity
and storage.

The solution in [2] represents an effective way to identify
sparse network echo responses. However, its performance is in-
fluenced by important design issues: (1) computational complexity
for implementing the wavelet transform, (2) centering of the time-
domain adaptive filter about the estimated peak, and (3) bulk de-
lay tracking leads to a jitter problem as the peak estimate changes.
These three design issues were not studied in [2]. Although the ba-
sic system studied here is the same as in [2], the implementation is
quite different and leads to significant performance improvement.

This paper presents a scheme for identifying sparse impulse re-
sponses that is based on the approach [2] (part of this work has
been presented in [11]). However, the sparse response bulk de-
lay is estimated in the transform domain using a block-processing
scheme. This approach provides a time-shifting property to the
transformed input signal vector that yields computational savings
of more than 85% (compared to [2]) for the peak detection. The
new block wavelet transform also locates the impulse response
peak more clearly. Thus, the peak detection is also improved in
the transform domain. Finally, a new and more robust approach is
presented for the time-domain adaptive filter window location and
update. This new approach significantly reduces the jitter prob-
lem encountered in [2]. An analytical model is developed for the
mean-square deviation of the transform-domain adaptive filter co-
efficients. Monte Carlo simulation examples show excellent results
for network echo cancellation and the accuracy of the analytical
model for typical echo impulse responses from the ITU-T recom-
mendation G.168 [3].

2. The partial Haar transform

The Haar wavelet transformation of a vector of length 2r is
formed by pre-multiplication with a 2r × 2r matrix H [12]. The
partial Haar transformation in [2] uses only a single wavelet scale,
say the mth. The corresponding matrix Hm is a 2r−m × 2r subma-
trix of H whose elements are defined as

Hm(i, j) = ψm
[

j − (i − 1)2m − 1
]
,

i = 1, . . . ,2r−m, j = 1, . . . ,2r, (1)

where

ψm(�) =
⎧⎨
⎩

2− m
2 , 0 � � � 2m−1 − 1,

−2− m
2 , 2m−1 � � � 2m − 1,

0, otherwise.

(2)

As an example, for r = 3 and m = 2, the partial Haar matrix is
given by

H 2 =
[

0.5 0.5 −0.5 −0.5 0 0 0 0
0 0 0 0 0.5 0.5 −0.5 −0.5

]
. (3)

Fig. 1. Block diagram of the proposed implementation.

The choice of m determines the number of coefficients of the
partial Haar transformation and thus the length of the transform-
domain adaptive filter. The mth scale partial-transform domain
adaptive filter uses only 2r−m coefficients for a response of
length 2r . This adaptive filter cannot exactly model the length-
2r impulse response. However, this is not required here since the
transform-domain adaptive filter is only used to estimate the loca-
tion of the channel impulse response peak.

Note that every row of Hm is composed of the same unity-
norm nonzero basis vector hT

m and additional zeros, where

hT
m = [

ψm(0), . . . ,ψm
(
2m − 1

)]
(4)

is the wavelet in the mth partial. For example, hT
2 = [0.5,0.5,−0.5,

−0.5] in (3). Moreover, all coefficients have the same magnitude.
These properties can be used to reduce implementation complex-
ity.

3. The Partial Haar DWT LMS algorithm

3.1. The new scheme

The computational complexity of [2] arises primarily from com-
puting the partial Haar transform vector of the input at each time
instant. This is because the transformed vector does not have a
shift structure, which is the structure observed in vectors that arise
from a tapped delay line implementation. Thus, the entire trans-
formed vector must be evaluated at each iteration. Only the most
recent transformed output sample would need to be evaluated at
each iteration if the transformed vector had a shift structure. This
property holds if the time-domain signals are processed in blocks
of length 2m when the mth partial transform is used. For exam-
ple, an input vector of length 8 is composed of two subvectors
of length 4 in (3). Each subvector is multiplied by the same basis
vector hT

m to generate the two samples of the transformed vector.
Only one new transform sample must be evaluated at each iter-
ation if the input vector samples advance in blocks of length 4
(2m for m = 2). The transform vector will then have the shift
structure, and the adaptive weight vector remains constant for the
duration of each block.

Fig. 1 shows a block diagram of the proposed implementation.
Here, n is the time sample index, k is the block index, x(n) is the
input signal, wo is the unknown parameter vector, η(n) is the ad-
ditive noise, d(n) is the desired signal, w(k) is the wavelet-domain
adaptive weight vector, and w t(n) is the time-domain adaptive
weight vector. The input vector z(k) to the wavelet-domain adap-
tive filter has the shift structure. The top element of z(k) and the
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