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Abstract

In this paper, the problem of dissipativity and passivity analysis for discrete-time T-S fuzzy stochastic
neural networks with leakage time-varying delays is investigated based on Abel lemma approach. In order
to obtain less conservative results, Jensen inequality, free-weighting matrix approach and Wirtinger-based
inequality have been intensively used in the context of time delay systems. In parallel, the above-mentioned
approaches have also been applied to discrete time-delay systems. However, it is well-known that these
inequalities may introduce an undesirable conservatism in the dissipativity and passivity conditions in the
existing available literature. In this paper, we propose an alternative inequality based on Abel lemma, more
precisely on the Abel lemma-based finite sum inequalities. By constructing suitable Lyapunov—Krasovskii
functional and using the stochastic analysis technique, strictly (Q, S, R)—y—dissipativity and passivity
conditions are derived to the concerned neural networks. The proposed criterion that depends on the upper
bounds of the leakage time-varying delay is given in terms of linear matrix inequalities, which can be solved
by MATLAB LMI Control Toolbox. Finally, numerical examples are shown to demonstrate the usefulness
and effectiveness of the proposed methods.
© 2016 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Neural networks have been successfully applied in a variety of areas such as signal processing,
pattern recognition, associative memories, parallel computation, combinatorial optimization and
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model identification, and these applications depend heavily on their dynamic behaviors. The
dynamical behaviors of neural networks are the key to the above-said applications and also it is a
necessary step for the practical design of neural networks. Up to now, there have been fruitful
research results available in the literature about the dynamic behaviors of neural networks
[14,23,28,42,47,48]. There are numerus results that have been investigated the dynamic behavior
of continuous-time neural networks [3,23,28,44]. However, compared with continuous-time
neural networks, discrete-time neural networks equally have a strong engineering application
background for the sake of computer-based simulation and the dynamics of continuous-time
neural networks cannot be preserved by discretization as mentioned in [19]. Hence, it is essential
to study the dynamical behavior of discrete-time neural networks.

Moreover, time delays are frequently encountered in various engineering, biological, and
economic systems [35]. Due to the finite speed of information processing and the inherent
communication time of neurons, the existence of time delays usually causes oscillation,
divergence, or even instability of neural networks. Therefore, it is of both theoretical and
practical importance to study the dynamical behavior of neural networks with time delays.
Examples of time delays in dynamical systems are computational delays, input delays, and
measurement delays [9]. Furthermore, neural networks with leakage delay are a class of
important neural networks as time delay in the leakage term has great impact on the dynamics of
neural networks since time delay in the stabilizing negative feedback term has a tendency to
destabilize a system. Recently, in [1], the authors investigated stability analysis for discrete-time
neural networks with leakage time-varying delays by using reciprocally convex combination
approach whereas stability of complex valued delayed neural networks with leakage delay is
addressed in [5]. Moreover, in [10] the authors investigated stability analysis of neural networks
with leakage time-varying delays.

It is well known that dissipativeness was initially introduced by “Willems” in terms of an
inequality involving the storage function and supply rate. Dissipativity theory has played a
critical part in the analysis and control design of linear and nonlinear systems, especially for
high-order systems [36], since from the practical application point of view, many systems need to
be dissipative for achieving effective noise attenuation [7,24,27]. This provides strong
connection between Physics, system theory and control engineering. The dissipativity theory
has proven to be essential and very useful tool for control applications like robotics, active
vibration damping, electromechanical systems, combustion engines, circuit theory, and for
control techniques like adaptive control, and inverse optimal control problems. The dissipative
theory being a framework for the design and analysis of control systems using an input—output
description based on energy-related consideration is applicable in characterizing important
system behaviors, such as passivity, and has close connections with passivity theorem, bounded
real lemma, Kalman—Yakubovich lemma, and the circle criterion [8,25]. On the other hand,
passivity is part of a broader and a general theory of dissipativeness. The main idea of passivity
theory is that the passive properties of a system can keep the system internally stable. In recent
years, dissipativity and passivity results for neural networks are established in [26,39,40,43,44].

It is worth pointing out that the theory of “Fuzzy Sets” was introduced by Zadeh, which plays
a vital role in the modeling and controlling of complex nonlinear systems. Based on the fuzzy set
theory, the Takagi—Sugeno (T-S) fuzzy model [34] is regarded as an effective measure for the
modeling of nonlinear systems. The T-S fuzzy dynamic model is described by a family of fuzzy
IF-THEN rules that represent local linear input—output relations of a nonlinear system. The T-S
fuzzy model introduced in [34] is essentially a multi-model approach in which some linear
models are blended into an overall single model through nonlinear membership functions to
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