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The stochastic Newton recursive algorithm is studied for system identification. The main advantage of this 
algorithm is that it has extensive form and may embrace more performance with flexible parameters. 
The primary problem is that the sample covariance matrix may be singular with numbers of model 
parameters and (or) no general input signal; such a situation hinders the identification process. Thus, the 
main contribution is adopting multi-innovation to correct the parameter estimation. This simple approach 
has been proven to solve the problem effectively and improve the identification accuracy. Combined 
with multi-innovation theory, two improved stochastic Newton recursive algorithms are then proposed 
for time-invariant and time-varying systems. The expressions of the parameter estimation error bounds 
have been derived via convergence analysis. The consistence and bounded convergence conclusions of 
the corresponding algorithms are drawn in detail, and the effect from innovation length and forgetting 
factor on the convergence property has been explained. The final illustrative examples demonstrate the 
effectiveness and the convergence properties of the recursive algorithms.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Parameter estimation methods have elicited considerable atten-
tion in system modelling, signal processing and adaptive control. 
(e.g. [13,17,26–32]). To improve the estimation efficiency and re-
alize model update online, recursive identification algorithms have 
been developed and corresponding performance analysis has also 
been conducted [7,16,21,24]. In this paper, we mainly focus on the 
algorithm performance for time-invariant and time-varying single-
rate systems. Although considerable work has been published on 
recursive algorithms, further research in this area is still required.

Numerous studies have emphasized several specific algorithms, 
such as recursive least squares (RLS) and stochastic gradient (SG) 
algorithms. Each algorithm has its own advantages and disadvan-
tages with specific form [8,9]. Although numerous achievements 
have been obtained, research is lacking on the more extensive 
algorithms. The stochastic Newton recursive (SNR) algorithm is 
based on the gradient-descent idea and employs sample covariance 
matrix to control the update directions [15,33]. Compared with 
other recursive algorithms, the SNR algorithm has a more general 
form, based on which the internal relations of other algorithms can 
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be revealed [6,12,14,15]. Concurrently, more possibilities exist for 
the algorithm parameters, such as the forgetting factor. The SNR 
algorithm shows higher research value and has been used in sev-
eral areas of identification, control and signal processing [35,36]. 
Therefore, the SNR algorithm is studied in this paper. Following the 
basic form, two specific algorithms are derived for time-invariant 
and time-varying systems in this study.

However, when the input signal is insufficiently general and (or) 
the number of model parameters is large, the sample covariance 
matrix may be singular or approach singularity [35]. The ill-posed 
problem arises when inverting the covariance matrix (as shown 
in Eqs. (8) and (9)), which may hinder the parameter identifi-
cation. A similar problem may appear in many other algorithms 
[5,4,11,37,38]. Certain methods have been explored to solve this 
problem, in which adding one positive definite matrix is the main 
approach [1,2,14]. A diagonal matrix is usually adopted. However, 
specific conditions should be satisfied for the matrix to guarantee 
the parameter convergence, and the determination of the matrix is 
not easy [1,2]. In the meanwhile, the values of the matrix would 
influence the convergence property of the algorithm. Ding and 
Chen presented multi-innovation identification theory and then 
proposed several multi-innovation-based algorithms [8,9,5,4,11,37,
38,40]. The basic idea of multi-innovation theory is utilizing his-
torical input–output data together with the current data at each 
recursion to update the parameter estimations; the parameter es-
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timation accuracy has been proven to improve [8–10]. The conver-
gence analysis in Section 3 shows that the singular covariance ma-
trix is avoided based on the multi-innovation method. Therefore, 
combined with multi-innovation theory, multi-innovation stochas-
tic Newton recursive (MISNR) algorithms are proposed. Although 
this improvement is modest, the problem has been solved easily 
and the calculation is not excessively increased. Compared with 
the method of adding positive definite matrix, no additional ef-
forts should be made to determine the matrix. Thus, the proposed 
algorithm is easy to operate in applications.

The remainder of the paper is organized as follows. In Section 2, 
two MISNR algorithms are derived. In Section 3, the consistency of 
the corresponding algorithm for time-invariant systems is proven. 
In Section 4, based on the algorithm for time-varying systems, the 
parameter estimations are proven boundedly convergent. In Sec-
tion 5, several illustrative examples for the results in this paper 
are presented. Section 6 provides the concluding remarks.

2. The MISNR algorithms

In this section, the SNR algorithm is introduced first. Com-
bined with multi-innovation theory, two MISNR algorithms are 
proposed for time-invariant and time-varying SISO (single-input 
and single-output) systems. The algorithms are then extended to 
MIMO (multi-input and multi-output) systems.

2.1. The MISNR algorithms for SISO systems

Consider the typical linear regression model [8,12]

A(z)y(k) = B(z)u(k) + v(k)

A(z) = 1 + a1z−1 + a2z−2 + · · · + ana z−na

B(z) = b1z−1 + b2z−2 + · · · + bnb z−nb

in which z represents the forward shift operator and z−1x(k) =
x(k − 1). The model is rewritten as

y(k) = ϕτ (k)θ(k) + v(k) (1)

ϕτ (k) = [−y(k − 1),−y(k − 2), . . . ,

− y(k − na), u(k − 1), u(k − 2), . . . , u(k − nb)
]

θ(t) = [a1,a2, . . . ,ana ,b1,b2, . . . ,bnb ]τ
in which y(k), u(k) and v(k) represent the output, input and noise 
variables, respectively; ϕ(k) ∈ Rn×1 is the information vector in-
cluding historical measured data; θ(k) ∈ Rn×1 is the parameter 
vector, and n = na + nb .

The SNR algorithm is presented below [14,15,33]:{
θ̂ (k) = θ̂ (k − 1) + ρ(k)R−1(k)ϕ(k)

[
y(k) − ϕτ (k)θ̂ (k − 1)

]
R(k) = R(k − 1) + ρ(k)

[
ϕ(k)ϕτ (k) − R(k − 1)

] (2)

where e(k) = y(k) − ϕτ (k)θ̂ (k − 1) is defined as innovation. ρ(k)

represents the forgetting factor, and R(k) represents the sample 
covariance matrix. The first equation in Eq. (2) is the main part of 
the algorithm, and R(k) can be substituted with certain constant 
matrix.

No fixed expression exists for {ρ(k)}, but ρ(k) satisfies the basic 
condition for time-invariant systems [23,22] to ensure the consis-
tency of the algorithm:⎧⎪⎨
⎪⎩

0 < ρ(k) < 1
∞∑

k=1

ρ(k) = ∞,

∞∑
k=1

ρ2(k) < ∞ (3)

For time-varying systems, the algorithm of Eq. (2) is unable to 
track time-varying parameters for that ρ(k)R−1(k)ϕ(k) approaches 
to zero as k increases (according to Eq. (3) and Theorem 1). To im-
prove the tracking performance of the algorithm, ρ(k) is assumed 
equal to some positive constant λ (0 < λ < 1) [8,9,12,14,15]; the 
corresponding algorithm is{

θ̂ (k) = θ̂ (k − 1) + λR−1(k)ϕ(k)
[

y(k) − ϕτ (k)θ̂ (k − 1)
]

R(k) = R(k − 1) + λ
[
ϕ(k)ϕτ (k) − R(k − 1)

] (4)

This algorithm has been proven effective for tracking time-
varying parameters when adopting a constant forgetting factor 
[8–10]. These two recursive algorithms (Eqs. (2), (4)) are obtained 
by minimizing the cost function J (θ) := E[‖y(k) −ϕτ (k)θ‖2]; only 
the innovation scalar e(k) is utilized to correct the parameter es-
timations. Here, ‖X‖2 = tr(X Xτ ) and tr(•) represents the trace of 
the matrix. However, when R(k) appears singular or approaches 
singularity, its inversion cannot be calculated and the identification 
process ceases. To solve this problem, we attempt to extend inno-
vation scalar to the innovation vector. Correspondingly, the cost 
function is expressed as

J (θ) := E
[∥∥Y (k) − Γ τ (k)θ

∥∥2]
(5)

Y (k) = [y(k), y(k − 1), . . . , y(k − N + 1)
]τ ∈ R N (6)

Γ (k) = [ϕ(k),ϕ(k − 1), . . . ,ϕ(k − N + 1)
] ∈ Rn×N (7)

Based on the cost function, deriving the MISNR algorithm as{
θ̂ (k) = θ̂ (k − 1) + ρ(k)R−1(k)Γ (k)

(
Y (k) − Γ τ (k)θ̂ (k − 1)

)
R(k) = R(k − 1) + ρ(k)

(
Γ (k)Γ τ (k) − R(k − 1)

) (8)

For time-invariant systems, the values of {ρ(k)} also satisfy the 
basic rules in Eq. (3). If the systems are time-varying, we have the 
MISNR algorithm as{

θ̂ (k) = θ̂ (k − 1) + λR−1(k)Γ (k)
(
Y (k) − Γ τ (k)θ̂ (k − 1)

)
R(k) = R(k − 1) + λ

(
Γ (k)Γ τ (k) − R(k − 1)

) (9)

In Eqs. (8), (9), E(k) = Y (k) − Γ τ (k)θ̂ (k − 1) is defined as inno-
vation vector and N represents innovation length. The algorithms 
in Eqs. (8), (9) use both current and past data. R(k) is always pos-
itive definite (Theorem 1 and Remark 1).

We have the flow diagrams for these two algorithms, see Fig. 1.

2.2. The MISNR algorithms for MIMO systems

The model for MIMO systems is expressed as

A(z)y(k) = B(z)u(k) + v(k)

y(k) = [y1(k), y2(k), . . . , ym(k)
]τ

u(k) = [u1(k), u2(k), . . . , um(k)
]τ

v(k) = [v1(k), v2(k), . . . , vm(k)
]τ

A(z) = I + A1z−1 + A2z−2 + · · · + Ana z−na ,

B(z) = B1z−1 + B2z−2 + · · · + Bnb z−nb ,

where y(k) ∈ Rm×1, u(k) ∈ Rm×1 and v(k) ∈ Rm×1, A(z) ∈ Rm×m

and B(z) ∈ Rm×m are polynomial matrices; I is unit diagonal ma-
trix. The model can be rewritten as

y(k) = θτ (k)ϕ(k) + v(k)

ϕ(k) = [−yτ (k − 1), . . . ,−yτ (k − na),uτ (k − 1), . . . ,

uτ (k − nb)
]τ ∈ Rm(na+nb)×1

θτ (k) = [A1, A2, . . . , Ana , B1, B2, . . . , Bnb ] ∈ Rm×m(na+nb)
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