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In this paper, we propose a new multiscale decomposition algorithm called adaptive digital ridgelet (ADR) 
transform. Differently from the traditional nonadaptive multiscale decompositions, this algorithm can 
adaptively deal with line and curve information in an image by considering its underlying structure. As 
the key part of the adaptive analysis, the curve parts of an image are detected accurately by a new 
curve part detection method. ADR transform is applied to image denoising experiment in this paper. 
Experimental results demonstrate its efficiency for reducing noises as PSNR values can be improved 
maximally 5 dB compared with other methods and MAE values are also considerably improved. A new 
comparison criterion is also proposed and using this criterion, it is shown that ADR transform can provide 
a better performance in image denoising.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

With the rapid development of image processing, more and 
more tasks, such as image restoration, edge detection, singularity 
detection, image compression, texture recognition and classifica-
tion, exceed the ability of traditional Fourier transform as an image 
analysis method. Its limitations in approximation accuracy and di-
rectional information description remain this challenge unsolved 
until the flourishing of multiscale decomposition analysis in recent 
years.

In the past decades, the development of multiscale decompo-
sition analysis has built many new tools for image analysis, such 
as wavelet [1], ridgelet [2–4], curvelet [5,6], brushlet [7], wedgelet 
[8], beamlet [9], contourlet [10], bandelet [11], directionlet [12], 
and shearlet [13] methods. Different prominent properties of these 
methods make singularity analysis become possible and benefit 
image processing a lot. Among the family of the multiscale geo-
metric transforms, ridgelet and curvelet transforms have been the 
most widely used ones due to their ideal approximation property 
in linear and curved singularity analysis.

In [6], Candes utilized two terminologies, Lagrangian represen-
tation and Eulerian representation, to elaborate the distinction of 
multiscale transform. The former one denotes the representation 
is constructed using full knowledge of the intrinsic structure of an 
object and the latter one indicates a fixed nonadaptive construc-
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tion of a given object. Although Lagrangian representation yields 
a better approximation performance, normally it is hard to get a 
thorough knowledge of an image. So actually, all the multiscale 
geometric analysis methods are Eulerian representations.

Candes and Donoho stated in [2,5,6] that ridgelet is the best 
approximation method to represent an object which has a discon-
tinuity across a line, and curvelet is the best one for objects with 
discontinuities across curves. The approximation rates of ridgelet 
and curvelet are very close to the ideal Lagrangian condition, and 
are better than any other nonadaptive approaches such as Fourier 
transform and wavelet transform. Because of that, ridgelet trans-
form and curvelet transform are widely used in image analysis, 
such as image denoising and enhancement [14–17], texture classi-
fication [18,19], and watermarking [20].

However, ridgelet transform and curvelet transform are non-
adaptive methods and majority of their applications apply non-
adaptive processing to research objects too. This fact inherently 
limits their analysis ability. Behind the prosperous applications in 
various images, a few deep thoughts about how to improve their 
performance are presented.

To overcome this dilemma, a new algorithm, adaptive digital 
ridgelet (ADR) transform, is proposed in this paper. It first takes 
the underlying structure of an image into consideration and then 
deals with line and curve information adaptively. This new decom-
position strategy provides us another solution to analyze images 
adaptively. And various experimental results demonstrated it is 
very efficient in image denoising.

The rest of this paper is organized as follows. In Section 2, we 
expound the adaptive digital ridgelet transform algorithm. Image 
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Fig. 1. Frame diagram of ADR transform.

denoising methodology for ADR transform is presented in Sec-
tion 3, and experiment results are reported and discussed in Sec-
tion 4. Finally, we draw conclusions in Section 5.

2. Adaptive digital ridgelet transform

In this section, concept and detailed processing procedure of 
ADR transform is illustrated. Although it is impossible for us to get 
totally full knowledge of intrinsic structure of an object, it could 
be much easier for one to concentrate on some interested parts of 
an image only such as line and curve information.

Usually, line and curve information are both rich and crucial in 
our research targets. It is not hard to imagine that if analysis can 
be adaptive to them and process them separately, researches can 
be more effective. Motivated by this, an adaptive digital ridgelet 
transform is proposed, which can deal with line and curve infor-
mation adaptively. A frame diagram of ADR transform is presented 
in Fig. 1.

As shown in the frame diagram, with the assistance of a curve 
part detection algorithm, the original image is separated into a se-
ries of line and curve parts, in which line or curve is the major 
component respectively. Digital ridgelet transform can be used in 
line parts directly due to its excellent property in linear singular-
ity analysis. However, it is not suitable for curve parts. Inspired by 
the methodology of curvelet, wavelet transform is applied to de-
compose the curve parts into a finer scale. Here, j = J indicated 
the finest scale. Next the coefficients are spatially partitioned into 
squares in different scales. After these, the curved singularity has 
been converted to linear singularity. Consequently, ridgelet trans-
form is utilized for the original curve parts too.

In the method above, one can think that using curvelets seems 
to be more appropriate than transforming curved singularities into 
the linear singularities. However, directly applying curvelet trans-
form to curve parts will result in serious block effect after restora-
tion. All partitioned parts are non-overlapped. Once reconstructing 
them after finishing the coefficient processing procedure, there 
could be block effects because line and curve parts are decom-
posed by two different transforms. To mitigate the block effect, 
here we apply digital ridgelet transform to curve parts too. The 
following part is the detailed subsection about curve part detec-
tion and how to implement the decomposition.

Fig. 2. Sketch map of coordinate partition for orientation field values.

2.1. Curve part detection

An orientation field represents an intrinsic property of image’s 
underlying structure and defines the gray intensity change in a lo-
cal neighborhood. In image analysis, orientation fields have been 
widely used. After the observation of different types of images and 
their orientation fields, an empirical phenomenon is discovered 
that curves in an image usually trigger some changes in orientation 
field. The reason is not hard to imagine. Generally, the curvature 
value of a curve is obviously larger than the one of a line, while the 
curvature is exactly zero at every point in a straight line. Hence, for 
a curve, there will be some changes in curvature which can be re-
flected by the difference of orientation values. And that’s where a 
curve “turns around”.

Based on this, the curve turning-around points can be detected 
by searching the orientation corner points where the orientation 
fields change. And this kind of change can be indicated by the dif-
ference of orientation fields. Afterwards, parts in an image with 
rich curve information can be localized by these curve turning-
around points.

In different applications of image analysis, a variety of orien-
tation field computational methods have been developed. In this 
paper, a relatively easy and effective one is utilized which is pro-
posed by Lin in fingerprint analysis [21]. For a given image F , the 
block orientation O can be obtained by Lin’s algorithm where each 
value represents the orientation of its corresponding w × w block 
and lies in [−π/2, π/2]. For further processing procedure, orienta-
tion values in O are converted into [0, 7], where original values in 
[−π/2, −3π/8], [−3π/8, 2π/8], . . . , [3π/8, π/2], are altered into 
0, 1, . . . , 7, respectively. This means the coordinates are evenly sep-
arated into 8 parts and 0–7 represents one corresponding part 
as shown in Fig. 2. An example of orientation field computed by 
methods in [21] is presented in Fig. 3.

Consequently, in order to detect the curve part of F , F is parti-
tioned into a series of L × L blocks without overlap. The detection 
result of each block is computed by formula (1).

label(i, j) = op
(
d_h(O ) + d_v(O ) + d_d(O )

)
O = {O i, j,1,1, . . . , O i, j,L/w,L/w} i, j = 1,2, . . . , L (1)

Here, label(i, j) represents the detection result of the block in 
ith row and jth column. If its value is one, it means this 
is a curve block. Otherwise, it is detected as a line block. 
{O i, j,1,1, . . . , O i, j,L/w,L/w} indicates the L/w × L/w orientation 
values in one partitioned block. d_h, d_v , and d_d denote the 
differential operation in horizontal, vertical, and diagonal direc-
tion, respectively, which could be calculated by simply subtracting 
current orientation value and previous one in horizontal, vertical, 
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