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We discuss multivariate time series signal processing that exploits a recently introduced approach 
to dynamic sparsity modelling based on latent thresholding. This methodology induces time-varying 
patterns of zeros in state parameters that define both directed and undirected associations between 
individual time series, so generating statistical representations of the dynamic network relationships 
among the series. Following an overview of model contexts and Bayesian analysis for dynamic latent 
thresholding, we exemplify the approach in two studies: one of foreign currency exchange rate (FX) 
signal processing, and one in evaluating dynamics in multiple electroencephalography (EEG) signals. 
These studies exemplify the utility of dynamic latent threshold modelling in revealing interpretable, data-
driven dynamics in patterns of network relationships in multivariate time series.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Dynamic network structures generating inter-related time series 
arise in many scientific fields—from neuroscience, to engineering 
signal processing, to financial econometrics, and others. For statis-
tical definition and estimation of empirical networks, vector au-
toregressive (VAR) models have become standard tools (e.g. [37,
38]). A typical approach examines the relevance of VAR coeffi-
cients, linking to the idea of Granger [10] causality to suggest and 
quantify feed-forward network connections. Time-varying VAR (TV-
VAR) models refine this, in allowing for temporal changes in the 
strengths of such relationships (e.g. [14,30,9,26–28,15]). Linked to 
this, statistical graphical models are becoming increasingly popular 
in defining models of potentially sparse contemporaneous network 
associations induced by patterns of conditional independence [47,
16,7,12,5,44].

This paper overviews a framework of dynamic sparsity in em-
pirical network relationships using the latent threshold modelling 
(LTM) concept. Introduced in Nakajima and West [19], the LTM 
approach defines a class of parametrized models for threshold-
ing state parameter processes in broad classes of multivariate time 
series models. Time- and data-adaptive thresholding can induce 
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patterns of temporal sparsity in the resulting, practically effective 
state processes. We overlay the LTM method on TV-VAR models 
with Cholesky-style multivariate stochastic volatility (MSV) com-
ponents (e.g. [18]). We denote the overall model class by TV-VAR-
MSV. The time-varying VAR aspects flexibly represent and quantify 
dynamics in the feed-forward relationships among series, while the 
time-varying multivariate stochastic volatility elements represent 
and quantify dynamics in contemporaneous relationships.

The LTM concept allows for, and induces, dynamic patterns 
of sparsity in both feed-forward and contemporaneous networks 
linking the series. The model structure also allows decoupling of 
model fitting to a set of parallel but linked univariate dynamic 
models; computation scales only linearly with time series dimen-
sion as a result.

Following the introductory Section 1, we detail TV-VAR-MSV 
models and review the LTM ideas in Section 2. Section 3 outlines 
Bayesian analysis and computation for model fitting. Two applied 
studies follow: Section 4 presents an econometric finance example, 
exploring dynamic dependencies in international financial markets; 
Section 5 provides an example of dynamic network modelling of 
connectivities among multiple EEG signals from a neuropsychiatric 
study. Section 6 provides concluding comments.

Some notation: We denote vectors and matrices via bold font. 
We use the distributional notation y ∼ N(m, V ), d ∼ U (a, b), p ∼
B(a, b), v ∼ G(a, b), for the multivariate normal, uniform, beta, 
and gamma distributions, respectively. We also use s : t to denote 
s, s + 1, . . . , t when s < t , for succinct subscripting; e.g., y1:T de-
notes {y1, . . . , yT }.
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2. Latent threshold TV-VAR-MSV models

2.1. TV-VAR modelling

For the m × 1-vector time series yt , (t = 1, 2, . . .), consider the 
TV-VAR(p) model

yt =
p∑

j=1

� jt yt− j + ut, ut ∼ N(0,�t), (1)

where � jt is the m × m matrix of time-varying coefficients at 
lag j, ( j = 1 : p), and �t the variance matrix of the time t in-
novations vector ut . The model can easily be extended to include 
time-varying intercepts and dynamic regressions on other exoge-
nous predictors known at time t , but that is not of main interest 
here.

Denote by �t the time-varying precision matrix �t = �−1
t . Us-

ing Cholesky decomposition we can write

�t = A−1
t �t(A′

t)
−1, equivalently �t = A′

t�
−1
t At, (2)

with

At =

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0

−a21,t
. . .

. . .
...

...
. . .

. . . 0
−am1,t · · · −am,m−1,t 1

⎞
⎟⎟⎟⎟⎠

and

�t =

⎛
⎜⎜⎜⎜⎝

λ1t 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 λmt

⎞
⎟⎟⎟⎟⎠

, (3)

where the aijt elements are real-valued and the λ jt are positive. 
Decompositions of this form are increasingly popular in multi-
ple time series modelling (e.g. [23,33,30,18,19]). The decomposi-
tion allows for flexibility in modelling volatility matrices over time 
through models on the elements aijt , λ jt , while also enabling effi-
cient computation, as we detail further below.

Relating to graphical models [47,16,12], a zero in the i, j off-
diagonal element of �t relates to conditional independence of the 
corresponding innovation elements uit , u jt in ut . The undirected 
graph on m nodes representing the m scalar elements of ut has 
edges between only those pairs of nodes that are conditionally 
dependent, with the missing edges corresponding to node pairs 
with zero precision elements. Increased levels of conditional inde-
pendence are key idea to reducing parameter dimension, inducing 
parsimonious structure in �t , and hence �t , as a result. Any pat-
tern of off-diagonal zeros then represents the network of contem-
poraneous dependencies at time t . Note that many zeros among 
the elements aijt of the lower-triangular matrix At can induce off-
diagonal zeros in �t , i.e. sparsity of At can lead to a sparse set of 
contemporaneous network connectivities.

2.2. Decoupled system of dynamic regressions

From Eqs. (2), (3) we see that

At yt =
p∑

j=1

B jt yt− j + εt, εt ∼ N(0,�t), (4)

where: B jt = At� jt , ( j = 1 : p), and εt = At ut = (ε1t , . . . , εmt)
′ has 

independent elements εit ∼ N(0, λit), (i = 1 : m). The model can 
then be recast as the triangular system of univariate dynamic re-
gressions

y1t = z′
t−1a1t + ε1t,

y2t = z′
t−1a2t + a21,t y1t + ε2t,

y3t = z′
t−1a3t + a31,t y1t + a32,t y2t + ε3t,

...

ymt = z′
t−1amt + am1,t y1t + · · · + am,m−1,t ym−1,t + εmt,

where zt−1 = (y′
t−1, . . . , y

′
t−p)′ and, for each i = 1 : m, the ait is 

a mp × 1 vector formed by vertically stacking the transposed i-th 
rows of each of B1t, B2t, . . . , B pt in that order.

Finally, define x1t = zt−1, b1t = a1t , and, for i = 2 : m, xit =
(z′

t−1, y1t, . . . , yi−1,t)
′ and bit = (a′

it , ai1,t, . . . , ai,i−1,t)
′ . Then the 

model notation is simplified as

yit = x′
itbit + εit with εit ∼ N(0, λit), (i = 1 : m), (5)

with noise terms εit that are independent across i = 1 : m.
The system of Eqs. (5) is the model representation adopted. For 

each i, note that: (i) the leading mp elements of bit relate the 
time t univariate signal yit to the previous p lagged signals on all 
series, so defining feed-forward network structure; while (ii) for 
signals i = 2 : m, the last i − 1 elements of bit relate the yit to 
the contemporaneous values of other series yht for h < i; together 
these define the elements of At and hence, when coupled with �t , 
we recover the full multivariate volatility matrix �t . That is, this 
formulation coverts the goal of modelling multivariate volatility 
structure �t over time to that of a collection of dynamic regression 
vectors bit and scalar volatilities λit . This transformed representa-
tion of MSV structure is also then key to decoupling the analyses. 
Under dynamic model structures and priors for each (bit , λit) that 
are independent over i = 1 : m, Bayesian analysis reduces to com-
putations that are conditionally independent across series i and 
can be implemented in parallel.

The Cholesky-style representation of MSV structures that the 
general formulation here represents has become increasingly pop-
ular as a general approach due to (i) the decoupling that yields 
computational tractability, and (ii) the opportunity to model the 
resulting components (bit , λit) in various ways. On the latter point, 
the entire focus of our work here is to apply latent threshold mod-
els to the bit and one of two standard univariate volatility models 
to the λit , as detailed below. Connections with prior work on mul-
tivariate volatility include well-known latent factor models that 
structure �t via various forms of latent factor representation (e.g. 
[1,24,2,6,17,48]). There are similarities with our framework, in that 
Eq. (3) is a form of (full-rank) factor decomposition in which At is 
the inverse of a time-varying factor loadings matrix. More directly 
and practically, we note that we can explicitly include latent factor 
structure in more elaborate LTMs by adding latent factor compo-
nents to the right-hand side of Eq. (4) directly [20].

2.3. Latent threshold structure

The concept of using Bayesian variable selection methods to in-
duce zeros in TV-VAR state parameters has become of interest in 
a number of literatures, especially signal processing in time series 
econometrics (e.g. [15]). Coupled with this is the now traditional 
use of Bayesian graphical modelling to induce zeros in precision 
matrices of innovations in TV-VAR and other dynamic models (e.g. 
[5,41,40]). The concept and resulting methodology of latent thresh-
old modelling is a very general, and widely applicable strategy that 
permits the existence of relationships to vary over time, i.e., allow-
ing time- and data-adaptive dynamics in sparsity patterns in all 
model components within an overall model structure.

We follow Nakajima and West [19] in applying dynamic la-
tent thresholding to the model state vectors b1:m,t in Eq. (5). 
We use the simplest, practicable state models, based on underly-
ing latent autoregressive models of order one, or AR(1). For each 
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