
Digital Signal Processing 47 (2015) 25–35

Contents lists available at ScienceDirect

Digital Signal Processing

www.elsevier.com/locate/dsp

Bayesian topic model approaches to online and time-dependent 

clustering

M. Kharratzadeh, B. Renard, M.J. Coates ∗

Department of Electrical and Computer Engineering, McGill University, 3480 University St, Montreal, Quebec, H3A 0E9, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 19 March 2015

Keywords:
Online clustering
Probabilistic topic models
Dirichlet process mixture models
Streaming data
Sequential Monte Carlo sampling

Clustering algorithms strive to organize data into meaningful groups in an unsupervised fashion. For 
some datasets, these algorithms can provide important insights into the structure of the data and 
the relationships between the constituent items. Clustering analysis is applied in numerous fields, e.g., 
biology, economics, and computer vision. If the structure of the data changes over time, we need models 
and algorithms that can capture the time-varying characteristics and permit evolution of the clustering. 
Additional complications arise when we do not have the entire dataset but instead receive elements one-
by-one. In the case of data streams, we would like to process the data online, sequentially maintaining an 
up-to-date clustering. In this paper, we focus on Bayesian topic models; although these were originally 
derived for processing collections of documents, they can be adapted to many kinds of data. The main 
purpose of the paper is to provide a tutorial description and survey of dynamic topic models that are 
suitable for online clustering algorithms, but we illustrate the modeling approach by introducing a novel 
algorithm that addresses the challenges of time-dependent clustering of streaming data.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Clustering is an unsupervised learning technique, with the goal 
of finding a structure or pattern in a collection of unlabeled sam-
ples. It strives to identify groups, or clusters, of similar objects. The 
clusters may be distinct, in the sense that each object belongs to a 
single cluster, or they may overlap. In an unfortunate terminology 
overload in the literature, the word “clustering” is used to describe 
both the act of identifying the clusters (the algorithm) and the set 
of clusters identified by the algorithm. Most clustering algorithms 
employ some notion of distance between objects, and also have 
an explicit or implicit criterion defining what constitutes a “good” 
clustering. The algorithms then optimize (often heuristically) this 
criterion to determine the clustering.

In this paper, we focus on the task of online clustering, which 
involves clustering a series of data items that arrive sequentially. 
The goal is to provide a new clustering after the arrival of each 
data item; generally we also want to ensure that the identified 
clusterings evolve smoothly over time. We require that the clus-
tering algorithm is capable of learning the number of clusters 
automatically, and that the use of computational and memory re-

* Corresponding author.
E-mail addresses: milad.kharratzadeh@mail.mcgill.ca (M. Kharratzadeh), 

benjamin.renard@melix.net (B. Renard), mark.coates@mcgill.ca (M.J. Coates).

sources remains bounded over time. The algorithm must be capa-
ble of taking into account the order of the data arrivals; preferably 
the clustering should be dependent on the actual generation or ar-
rival times associated with each data item.

In mathematical form, the input is a sequence of data items 
{x1, x2, . . .}, which can either be a data stream or a sequence of 
limited size, as long as items are received one-by-one. Each data 
item xi is associated with a timestamp ti , whose value represents 
the time when the item was generated or received. In most cases, 
we will assume that each data item xi is a set of a discrete ele-
ments that are members of a predefined “vocabulary”, V , and we 
assume that each element of xi is essential to the meaning of the 
item. Our goal is to infer a clustering label zi for each data item; 
we need to provide the label for xi before data item xi+1 arrives.

We concentrate on clustering algorithms built upon probabilis-
tic topic models. Although these have some limitations in terms of 
the types of data they can represent efficiently, they have advan-
tages over many other clustering approaches. In particular, they 
specify a generative probabilistic model for the clustering, which 
permits application of principled inference procedures, including 
Bayesian methods. The primary purpose of this paper is to pro-
vide a tutorial description and survey of dynamic topic models that 
are suitable for online clustering algorithms, but we illustrate the 
modeling approach by introducing a novel algorithm that employs 
sequential Monte Carlo sampling to address the challenges of time-
dependent clustering of streaming data.

http://dx.doi.org/10.1016/j.dsp.2015.03.010
1051-2004/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.dsp.2015.03.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
mailto:milad.kharratzadeh@mail.mcgill.ca
mailto:benjamin.renard@melix.net
mailto:mark.coates@mcgill.ca
http://dx.doi.org/10.1016/j.dsp.2015.03.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dsp.2015.03.010&domain=pdf


26 M. Kharratzadeh et al. / Digital Signal Processing 47 (2015) 25–35

1.1. Probabilistic topic models

Probabilistic topic models were developed for the analysis 
of large collections of documents, with the goal of identifying 
common themes and topics. Excellent introductions are provided 
in [1,2]. One of the earliest topic models was latent Dirichlet al-
location (LDA) [3]. The key idea in LDA is that each document 
addresses multiple topics, and the words comprising the document 
can thus be considered as samples from common words employed 
when discussing these topics. Mathematically, each topic is defined 
as a distribution over a fixed vocabulary. In the probabilistic LDA 
model, to generate each document, a distribution over the topics is 
drawn from a Dirichlet distribution. To generate each of the words 
that comprise the document, we first draw a topic from the topic 
distribution, and then draw a word from the topic. The LDA gen-
erative model assumes a fixed number of topics and fixed word 
probabilities within each topic.

There have been many extensions of the topic model employed 
in LDA. Of most interest to us are (i) the extension to Dirichlet 
process mixture models, which allow the number of topics to be 
learned from the data rather than requiring specification in the 
prior; and (ii) the incorporation of time-dependency in the models. 
In Section 2 of the paper we provide an introduction to Dirichlet 
distributions and processes, and Dirichlet process mixture models. 
In Section 3 we review some of the techniques that have been pro-
posed for injecting temporal dependency into probabilistic topic 
models.

1.2. Dynamic/static and online/offline distinctions

Dynamic (as opposed to static) clustering incorporates the no-
tion of time in the dataset. Data items can either have a timestamp 
associated with their arrival in the dataset (e.g., a data stream), or 
they can evolve dynamically (e.g., geographic position of mobile 
users over time). A dynamic clustering algorithm then identifies 
clusterings that change over time.

A dynamic clustering algorithm can be either online or offline. 
Online clustering means that the algorithm must provide a clus-
tering for the data associated with timestamp t before seeing any 
data with timestamp t′ > t [4]. There are two main uses for online 
algorithms. The first case corresponds to data streams: we receive 
data items sequentially and we cannot afford to wait until we have 
all the items to perform processing. The second arises when we 
have access to the entire dataset, but the dataset is too big to be 
processed by offline methods, motivating sequential processing of 
elements or batches of elements. In offline clustering, the algo-
rithm takes as an input the entire data stream or the complete 
history of the dataset.

When considering datasets where each data item is associated 
with a timestamp, we can ask ourselves whether the temporal 
distance between two consecutive data items (i.e., the difference 
between their timestamps) is of any importance for the analysis of 
the dataset. If not, then we can replace the timestamp by the index 
of the item in the ordered dataset. This setting is useful when the 
time difference between two consecutive items is always the same 
(for example when considering articles published in a yearly jour-
nal). An algorithm that considers only the order of the data items, 
rather than the actual times, is called order-dependent. If the al-
gorithm explicitly takes into account the time difference between 
data item arrivals, we say that it is time-dependent.

Let us consider the example of clustering marathon runners by 
their performance in a race. An order-dependent algorithm would 
only consider the order in which the runners finished. A time-
dependent algorithm, however, would process the actual comple-
tion times. If we wanted to identify the top-10 finishers, the order-
dependent algorithm would suffice; if our goal were to identify a 

group of racers who all finished within 2 minutes of each other, 
a time-dependent algorithm is required.

1.3. Inference

Although topic models are well-matched to many data sets, 
and the prior is constructed so that there is conjugacy with the 
commonly-assumed likelihood function for the data, exact infer-
ence is in general infeasible. We must therefore turn our attention 
to approximate Bayesian inference approaches; the main candi-
dates are Markov chain Monte Carlo (MCMC) [5], variational in-
ference [6] and Sequential Monte Carlo (SMC) samplers [7].

One of the main challenges of a data stream setting is to keep 
the computational resources bounded as the number of processed 
items increases. For online clustering, we generally do not know 
the number of data items we will need to process ahead of time. 
Section 4 reviews methods that can be used to perform online 
posterior inference for the dynamic topic models. We focus on se-
quential Monte Carlo samplers, because they are naturally suited 
to online processing. We also highlight some of the recent work 
in streaming variational Bayes [8], which adapts variational ap-
proximation methods to make them more amenable to the online 
dynamic clustering task.

In Section 5 we present a sequential Monte Carlo (SMC) sam-
pling approach for performing inference for a time-dependent dy-
namic topic model. We build upon the work in [9,10], where Ülker 
et al. developed an SMC sampling approach for static Dirichlet 
process mixture models. In the static models, the probability of 
assignment to a cluster does not depend on the time of arrival or 
generation of a data item. Our focus is on the streaming, online 
setting, where the importance of a data item is very much associ-
ated with when it arrived, so we incorporate explicit dependence 
on time, and we consider how to ensure that the memory require-
ments of the algorithm remain bounded. We introduce a novel 
sampling procedure that focuses on elements whose clustering la-
bels are more uncertain; our numerical experiments and analysis 
of news data indicate that this procedure allows us to either im-
prove inference performance or reduce computational overhead.

1.4. Example application

Privacy concerns have always existed for popular social net-
works such as Facebook, Twitter or Google+, due to their reliance 
on targeted advertising. These concerns led to the creation of sev-
eral privacy-focused social networks such as Diaspora [11] and 
Friendica [12]. These alternative social networks are peer-to-peer 
networks of servers that distribute data throughout the network in 
an attempt to maintain a high level of privacy. Each user can re-
main in control of his/her data by selecting which server stores it. 
Although this distributed architecture protects the users’ privacy, 
it generates several problems that centralized social networks do 
not face. Control of the network is more limited and performance 
problems can arise (primarily slow response time), because nodes 
of the network can be self-hosted web servers with limited com-
putational resources. Search is more challenging, because each 
node has access only to a limited portion of the network.

Often users want to search for other users that share a simi-
lar interest, usually by providing a set of keywords related to that 
interest. Centralized networks have direct access to all users’ data 
and hence can directly determine the users whose interests match 
the query. On the other hand, nodes in a distributed network have 
only access to the data corresponding to their own users and they 
only know a subset of entire network, composed of their neigh-
bors in the peer-to-peer graph. To find users on other nodes, they 
need to forward the query in an efficient way.



Download English Version:

https://daneshyari.com/en/article/560188

Download Persian Version:

https://daneshyari.com/article/560188

Daneshyari.com

https://daneshyari.com/en/article/560188
https://daneshyari.com/article/560188
https://daneshyari.com

