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Bayesian inference often requires efficient numerical approximation algorithms, such as sequential Monte 
Carlo (SMC) and Markov chain Monte Carlo (MCMC) methods. The Gibbs sampler is a well-known MCMC 
technique, widely applied in many signal processing problems. Drawing samples from univariate full-
conditional distributions efficiently is essential for the practical application of the Gibbs sampler. In this 
work, we present a simple, self-tuned and extremely efficient MCMC algorithm which produces virtually 
independent samples from these univariate target densities. The proposal density used is self-tuned and 
tailored to the specific target, but it is not adaptive. Instead, the proposal is adjusted during an initial 
optimization stage, following a simple and extremely effective procedure. Hence, we have named the 
newly proposed approach as FUSS (Fast Universal Self-tuned Sampler), as it can be used to sample 
from any bounded univariate distribution and also from any bounded multi-variate distribution, either 
directly or by embedding it within a Gibbs sampler. Numerical experiments, on several synthetic data 
sets (including a challenging parameter estimation problem in a chaotic system) and a high-dimensional 
financial signal processing problem, show its good performance in terms of speed and estimation 
accuracy.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Bayesian methods, and their implementations by means of so-
phisticated Monte Carlo techniques [1,2], have become very pop-
ular over the last two decades. Indeed, many practical statistical 
signal processing problems demand procedures for drawing from 
probability distributions with non-standard forms, such as Markov 
chain Monte Carlo (MCMC) methods [3,4] and particle filters [5–7]. 
MCMC techniques generate samples from a target probability den-
sity function (pdf) by drawing from a simpler proposal pdf [1,8]
and generating a Markov chain. The two most widely applied 
MCMC approaches are the Metropolis–Hastings (MH) algorithm 
and the Gibbs sampler [1,2].

The Gibbs sampling technique is extensively used in Bayesian 
inference [9] to generate samples from multivariate target densi-
ties, drawing each component of the samples from univariate full-
conditional densities [10–12].1 When the multivariate target can 
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1 Blockwise Gibbs sampling approaches, where several random variables are up-
dated simultaneously, have been proposed to speed up the convergence of the 
Gibbs sampler [13]. However, unless direct sampling from the multi-variate full-

be easily factorized into univariate conditional pdfs, the key point 
for the successful application of the Gibbs sampler is the ability 
to draw efficiently from these univariate pdfs [1,2,10]. The best 
scenario for Gibbs sampling occurs when exact samplers for each 
full-conditional are available. Otherwise, another exact sampling 
technique, like rejection sampling (RS) or an MH-type algorithm, 
is typically used within the Gibbs sampler to draw from the com-
plicated full-conditionals. In the first case, samples generated from 
the RS algorithm are independent, but the acceptance rate can be 
very low. In the second case, we have an approach where an in-
ternal MCMC (the MH method) is applied inside another external 
MCMC (the Gibbs sampler). Therefore, the typical problems of the 
external-MCMC (long “burn-in” period, large correlation, etc.) could 
raise dramatically if the internal-MCMC is not extremely efficient. 
Indeed, although the Gibbs sampler needs only one sample from 

conditionals is feasible, these approaches result in an increased difficulty of drawing 
samples and a higher computational cost per iteration. Furthermore, the perfor-
mance of the overall algorithm can decrease if the blocks are not properly chosen, 
especially when direct sampling from the multi-variate full-conditionals is unfeasi-
ble.
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each full-conditional, several iterations are typically performed to 
avoid the “burn-in” period of the internal-MCMC.2

In order to avoid these problems, several automatic and 
self-tuning samplers have been proposed: adaptive rejection sam-
pling (ARS) [14,15], Adaptive Rejection Metropolis Sampling (ARMS) 
[16–18], Independent Doubly Adaptive Rejection Metropolis Sampling
(IA2RMS) [19,20], Adaptive Sticky Metropolis (ASM) [21], etc. ARS 
builds a piecewise linear proposal on the target’s log-domain, 
starting with a reduced number of support points and incorpo-
rating new points whenever a candidate sample is rejected. Unfor-
tunately, since it is based on the rejection sampling technique, the 
proposal must be always above the target, a requirement which 
is only fulfilled by log-concave targets. In order to solve this is-
sue, ARMS introduces a Metropolis–Hastings step, thus obtaining 
a universal sampler which is able to draw virtually from any tar-
get pdf. However, the adaptive structure in ARMS has an important 
restriction: support points cannot be added inside regions where 
the proposal is below the target. Recently, the IA2RMS and ASM 
algorithms have been proposed to overcome this drawback, intro-
ducing more flexibility in the mechanism used to add points to the 
support set and decoupling it from the proposal construction.

All the previous methods build an adaptive sequence of pro-
posal pdfs via some interpolation procedure given a set of support 
points. The proposal is updated when a new support point is incor-
porated, according to some statistical criterion. However, although 
these methods can attain a very good performance, the results 
show a dependence on the initial set of support points. Another 
drawback is the difficulty of ensuring their ergodicity, especially in 
applications within Gibbs sampling [2,17], as the Markovian na-
ture of the chain is lost due to the adaptive nature of the proposal, 
which may depend on all the previous samples. Other related 
works, where a non-adaptive proposal pdf is built via interpolation 
procedures can be found in literature [22–24]. Furthermore, differ-
ent types of generic adaptive MH schemes based on independent 
proposals have also been studied [25,26]. However, in general, the 
considered proposal pdf has a fixed parametric form so that the 
complete adaptation of the proposal is not possible.

In this work, we present a novel algorithm that follows a com-
plementary strategy: start with a large number of support points 
and remove many of them following some pruning strategy.3 The 
key idea is starting with a thin uniform grid that covers the ef-
fective support of the target and discard those support points that 
do not provide relevant information according to some pre-defined 
criterion. The idea of using a grid and a piecewise linear constant 
function to approximate a uni-variate full conditional was already 
proposed by the griddy Gibbs sampler [27]. However, their ap-
proach is substantially different from ours. On the one hand, they 
simply select a few support points heuristically, instead of starting 
with a large set of points and selecting the best ones in a prin-
cipled way. On the other hand, the proposal in the griddy Gibbs 
sampler does not take into account the tails of the target (the pro-
posal is set to zero outside of the interval covered by the grid), 
thus providing a poor performance for slowly decaying tails (e.g., 
heavy tailed distributions). Furthermore, this griddy approximation 
of the uni-variate full conditionals is not embedded within another 

2 Note that, from a theoretical point of view, performing a single iteration of the 
internal MH is enough to guarantee the ergodicity of the Gibbs sampler. However, 
the convergence of the chain can be very slow. Namely, the performance of the 
resulting estimator built from those samples can be very poor if the proposal pdf is 
not very similar to the full-conditionals. Hence, several iterations of the internal MH 
algorithm are typically required in order to achieve the desired level of performance 
(more as the proposal differs more from the target). See the numerical examples in 
Section 6 for further details on this issue.

3 Note that all of the previous methods typically follow the opposite strategy: 
start with a reduced number of support points and keep adding points in order to 
improve the proposal adaptively.

inner Monte Carlo method, thus leading to an approximate sam-
pler, unlike our scheme, which results in an exact sampler.

The resulting method is fast and extremely efficient (it yields 
virtually independent samples), even for highly multimodal and 
complicated targets. The dependence on the initial set of points 
is also drastically reduced, since the algorithm only requires an 
approximate knowledge of the effective support of the target pdf. 
Moreover, unlike previous approaches, the proposal is self-tuned 
during the initialization stage, without any adaptation afterwards. 
Hence, ergodicity is not an issue and the convergence of the chain 
to the target distribution is always guaranteed. For these reasons, 
we call the new method FUSS (“Fast Universal Self-tuned Sampler”) 
since, with this sampler, there is no “fuss” about convergence or 
tuning. The FUSS algorithm is particularly well suited for multi-
modal and spiky target densities (i.e., densities with several sharp 
and narrow modes), where virtually all of the existing MCMC tech-
niques fail. This kind of target pdfs often appears in practical ap-
plications, e.g., in ecology, bioinformatics and financial inference 
problems (see Sections 6 and 7).

The rest of the paper is organized as follows. Sections 2 and 
3 are devoted to recalling the general framework and describing 
the structure of the novel technique. Details about the proposal 
construction and generation are given in Section 4. Different prun-
ing algorithms are then introduced in Section 5. Sections 6 and 7
provide numerical results on several uni-variate and multi-variate 
pdfs, including a challenging parameter estimation problem in a 
chaotic system, as well as a multi-dimensional and multi-modal 
inference problem in financial signal processing. Finally, Section 8
contains some brief final remarks.

2. Problem statement

Bayesian inference often requires drawing samples from com-
plicated multivariate posterior pdfs, π(x|y) with x ∈ X D ⊆ R

D . 
A common approach, when direct sampling from π(x|y) is unfea-
sible, is using a Gibbs sampler [2]. At the i-th iteration, a Gibbs 
sampler obtains the d-th component (d = 1, . . . , D) of x, xd , by 
drawing from the full conditional pdf of xd given all the previously 
generated components [2,9,28], i.e.,

x(i)
d ∼ π̄ (xd|x(i)

1:d−1,x(i−1)

d:D ) = π̄ (xd) ∝ π(xd), (1)

where π̄ (xd) is the normalized target pdf, π(xd) denotes its unnor-
malized counterpart (note that we have dropped the dependence 
on x(i)

1:d−1 and x(i−1)

d:D to simplify the notation), xd ∈ X and the ini-

tial vector is typically drawn from the prior (i.e., x(0) ∼ π̄0(x)), but 
can also be set to some fixed value when no prior information is 
available or it is unreliable.

However, even sampling from the univariate pdfs in Eq. (1) can 
often be complicated. In these cases, a common approach is to 
use another Monte Carlo technique (e.g., rejection sampling (RS) 
or the Metropolis–Hastings (MH) algorithm) within the Gibbs sam-
pler, drawing candidates from a simpler proposal pdf,

p̄(x) ∝ p(x) = eW (x),

where p̄(x) and p(x) denote the normalized and unnormalized 
proposal respectively, W (x) is a “potential” function and x ∈ R. 
The best case occurs when an RS technique can be applied, since 
it yields independent and identically distributed (i.i.d.) samples. 
However, RS requires p(x) ≥ π(x) for all x ∈X , which may be hard 
to guarantee in practice. For instance, the adaptive rejection sam-
pling (ARS) technique can be applied only to log-concave target 
pdfs [15]. Thus, the use of another MCMC method becomes almost 
mandatory in practical applications. In this case, the performance 
of this approach depends strictly on the choice of p(x). Our aim 
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