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In this work, we present a recent wavelet-based image restoration framework based on a group-sparse 
Gaussian scale mixture model. A hierarchical Bayesian estimation is derived using a combination of 
variational Bayesian inference and a subband-adaptive majorization–minimization method that simplifies 
computation of the posterior distribution. We show that both of these iterative methods can converge 
together without needing nested loops, and thus good solutions can be found rapidly in the non-
convex search space. We also integrate our method, variational Bayesian with majorization minimization 
(VBMM), with tree-structured modeling of the wavelet coefficients. This extension achieves significant 
gains in performance over the coefficient-sparse version of the algorithm. The experimental results 
demonstrate that the proposed method and its tree-structured extensions are effective for various 
imaging applications such as image deconvolution, image superresolution and compressive sensing 
magnetic resonance imaging (MRI) reconstruction, and that they outperform more conventional sparsity-
inducing methods based on the l1-norm.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Linear inverse problems appear often in many applications of 
image processing such as restoration, motion estimation, recon-
struction and segmentation, where a noisy indirect observation y, 
of an original image x, is modeled as [1,2]

y = Bx + n (1)

where B of size M × N is the matrix representation of a direct 
linear operator and n is usually additive Gaussian noise with vari-
ance ν2.

In many scenarios, this inverse problem is highly ill-posed, i.e. 
the direct operator does not have an inverse or it is nearly singular 
so that its inverse is very sensitive to noise [3]. Thus it can only 
be solved satisfactorily by incorporating some regularization tech-
niques, often using Bayesian inference with prior information [4]. 
In previous works, it is found that wavelet-based tools, such as the 
Discrete Wavelet Transform (DWT), are powerful for modeling this 
prior knowledge [4–6].

In the past two decades, the DWT has been exploited for a wide 
range of signal processing applications such as denoising, decon-
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volution, superresolution, compression and classification (see, e.g., 
[7–11]). The DWT provides an efficient implementation based on 
a filter bank structure utilizing decimation and two discrete filters, 
a low-pass and a high-pass filter [12]. Wavelet-based regularization 
methods are good for image restoration problems because wavelet 
coefficients tend to be sparse for most image types.

Although the DWT is compact, it suffers from shift depen-
dency, lack of directionality, oscillation and aliasing [13]. These 
will significantly constrain the performance of a DWT-based sig-
nal processing system. To solve these shortcomings, the dual-tree 
complex wavelet transform (DT CWT) first proposed by Kingsbury, 
is a recent simple and efficient redundant transform that has been 
widely used in solving diverse signal processing problems. The 
DT CWT is better than the DWT for image restoration problems 
due to the fact that directional filters encourage greater sparsity 
and complex coefficients show more consistent persistence across 
scale. Other recent extensions of the DWT, such as curvelets [14]
and contourlets [15], would also work in this context but few, if 
any, combine the efficiency and good performance of the dual-tree 
approach.

It is known that the wavelet coefficients of natural images dis-
play non-Gaussian statistics and their marginal distributions typ-
ically show a large peak at zero with long heavy tails [16,17]. 
To account for this non-Gaussian behavior, many univariate para-
metric models such as generalized Laplacian distributions [17] and 
Bessel K form density models [18] have been previously used to 
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Fig. 1. (a) 8 × 8 image with 3-level 2D DWT decomposition. (b) Quadtree structure of wavelet coefficients.

model the wavelet coefficients. However, these models do not con-
sider the persistence across scales of wavelet coefficients [19]. In 
fact, the energies of wavelet coefficients of natural images exhibit 
a strong characteristic signal-dependent structure. Fig. 1 depicts an 
example of quadtree structure that corresponds to an 8 × 8 image 
with 3-level 2D DWT decomposition. To well capture the statis-
tical dependencies, bivariate shrinkage [20], Hidden Markov Tree 
models (HMM) [21,22] and Gaussian Scale Mixture Models (GSM) 
[16,23] have been widely applied to model wavelet coefficients 
whose energies are not randomly distributed. Among those meth-
ods, it is acknowledged that the GSM model can be used in the 
framework of sparse Bayesian learning (SBL) where the sparsity is 
obtained by reweighting the Gaussian prior [24,25]. Based on this 
connection, several researchers have shown that Bayesian methods 
are applicable for wavelet-based regularization problems [4,5,16].

Recently, Bayesian group-sparse (or block sparse) modeling has 
emerged where the sparsity is imposed on groups instead of in-
dividual components [27,28]. In [28], variational Bayesian (VB) in-
ference is used for group-sparse modeling and has been shown 
to find sparse solutions effectively. These approaches can poten-
tially be used in the wavelet domain since a pair of coefficients 
at a certain location and adjacent scales are typically both large or 
both small in amplitude [29]. Tree-structure existing in the wavelet 
domain allows group-sparse models to be easily constructed and 
used. One of the major contributions of our work is to investigate 
the use of Bayesian group-sparse modeling for wavelet-based reg-
ularization problems.

In [26], we proposed a hierarchical Bayesian modeling of 
wavelet coefficients derived from a group-sparse GSM model. 
Based on a combination of VB inference with a subband-adaptive 
majorization minimization (MM) method, the VBMM method in 
[26] effectively simplifies computation of the posterior distribu-
tion and finds good solutions in the non-convex search space. 
In addition, the VBMM method has also shown good potential 
with group-sparse modeling. In [30], we incorporate the VBMM 
method with a wavelet tree structure based on overlapped groups, 
which leads to an improved solution compared with unstructured 
coefficient-sparse modeling.

In this paper, we extend the ideas from [26] to generalize the 
VBMM method and discuss the theoretical foundations in some de-
tail. Different from [26] and [30], we also include the results of im-
age superresolution and MRI image reconstruction. The proposed 
method can handle very large data sets with a good performance 
and low computation cost. The paper is organized as follows. Sec-
tion 2 describes our proposed VBMM image restoration framework. 
Section 3 discusses the tree-structured extensions of VBMM. Exper-
imental results are shown in Section 4. Conclusions are provided in 
Section 5.

2. VBMM image restoration

In this section, we describe our proposed VBMM image restora-
tion framework and its tree-structured extensions.

2.1. Model formulations

To obtain a wavelet-based formulation, we note that the im-
age x can be represented by wavelet expansion as x = Mw where 
w is an N × 1 vector representing all wavelet coefficients, and M
is the inverse wavelet transform whose columns are the wavelet 
basis functions. In the case of an orthogonal basis, M is a square 
orthogonal matrix, whereas for an over-complete dictionary (e.g. a 
tight frame), M has N columns and M rows, with N > M [6]. The 
linear model in (1) then becomes

y = BMw + n (2)

and the resulting likelihood of the data assuming Gaussian noise n
can be shown to be

p(y|w, ν2) =
(

2πν2
)− M

2
exp{− 1

2ν2
‖y − BMw‖2} (3)

A GSM model is now employed to model the wavelet coefficients. 
Inspired from [28], we adopt a model which incorporates group 
sparsity such that wi , the ith group of w, follows a zero mean 
Gaussian distribution with an (as yet) unknown variance of σ 2

i per 
element. Therefore the conditional prior of w can be expressed as

p (w|S) =
G∏

i=1

N
(

wi|0,σ 2
i

)
= N

(
w|0,S−1

)
(4)

where wi is a vector of coefficients comprising the ith group of 
size gi , S is a diagonal matrix of size N × N formed from the vec-
tor s of size G whose ith entry is si = 1/σ 2

i , and G denotes the 
number of groups. The case G = N corresponds to independent 
sparse modeling of the wavelet coefficients [28]; whereas the case, 
G = N/2 and gi = 2 for all i, can be used to model the real and 
imaginary parts of G complex coefficients, each with a 2-D circu-
larly symmetric pdf. To be consistent with the following algebra, 
S needs to be of size N × N and, when N > G , its diagonal must 
be an expanded form of s where each si appears gi times for the 
elements of group gi , and N = ∑G

i=1 gi .
To proceed with Bayesian inference, the posterior distribution 

can be calculated via:

p
(

w|y,S, ν2
)

= p
(
y|w, ν2

) × p (w|S)

p
(
y|S, ν2

) (5)

Because both p 
(
y|w, ν2

)
and p (w|S) are Gaussian functions 

of w, the posterior distribution can be rearranged into a Gaussian 
form as
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