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We provide an overview of matrix and tensor factorization methods from a Bayesian perspective, 
giving emphasis on both the inference methods and modeling techniques. Factorization based models 
and their many extensions such as tensor factorizations have proved useful in a broad range of 
applications, supporting a practical and computationally tractable framework for modeling. Especially in 
audio processing, tensor models help in a unified manner the use of prior knowledge about signals, 
the data generation processes as well as available data from different modalities. After a general 
review of tensor models, we describe the general statistical framework, give examples of several audio 
applications and describe modeling strategies for key problems such as deconvolution, source separation, 
and transcription.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

With the recent technological advances of sensor and commu-
nication technologies, the cost of data acquisition and storage is 
significantly reduced. Consequently, the last decade has witnessed 
the dramatic increase in the amount of data that can be easily col-
lected. One important facet of data processing is extracting mean-
ingful information from highly structured datasets that can be of 
interest for scientific, financial, or technological purposes.

The key to exploiting the potential of large datasets lies in 
developing computational techniques that can efficiently extract 
meaningful information. These computational methods must be 
scalable and tailored for the specifics of an application, but still 
be versatile enough to be useful in several scenarios. In this pa-
per, we will focus on audio processing and review one particular 
class of such models, that provide a favorable balance between 
high modeling accuracy, ease of implementation and ease of man-
agement of required computational resources. This class of mod-
els, coined under the name of tensor factorization models along 
with their Bayesian interpretations, will be the focus of this tuto-
rial paper. The mathematical setup may look somewhat abstract at 
a first sight, but the generic nature of the approach makes ten-
sors suitable for a broad range of applications where complicated 
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structured datasets need to be analyzed. In particular, we will 
show examples in the domain of audio processing where signifi-
cant progress has been achieved using tensor methods. While the 
modeling and inference strategies can be applied in the broader 
context of general audio and other non-stationary time series anal-
ysis, the hierarchical Bayesian nature of the framework makes the 
approach particularly suitable for the analysis of acoustical signals.

In audio processing, an increasing number of applications are 
developed that can handle challenging acoustical conditions and 
highly variable sound sources. Here, one needs to exploit the 
inherent structure of acoustic signals to address some of the 
key problems such as denoising, restoration, interpolation, source 
separation, transcription, bandwidth extension, upmixing, coding, 
event recognition and classification. Not surprisingly, many differ-
ent modeling techniques have been developed for those purposes. 
However, as is the case for computational modeling of all physical 
phenomena, we face here with a trade off: accuracy versus com-
putational tractability – a physically realistic and accurate model 
may be too complex to meet the demands of a given application 
to be useful in practice.

Typically, there is a lot of a-priori knowledge available for 
acoustic signals. This includes knowledge of the physical or cog-
nitive mechanisms by which sounds are generated or perceived, 
as well as the hierarchical nature by which they are organized 
in an acoustical scene. In more specific domains, such as mu-
sic transcription or audio event recognition, more specialized as-
sumptions about the hierarchical organization are needed. Yet, the
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resulting models often possess complex statistical structure and 
highly adaptive and powerful computational techniques are needed 
to perform inference.

Factorization-based modeling has been useful in addressing the 
modeling accuracy versus computational requirement trade off in 
various domains beyond audio signal processing [1], with promi-
nent examples such as text processing [2], bioinformatics [3], com-
puter vision [4], social media analysis [5], and network traffic anal-
ysis [6]. The aim in such modeling strategies is to decompose an 
observed matrix or tensor (multidimensional array) into seman-
tically meaningful factors in order to obtain useful predictions. 
Meanwhile, the factors themselves also provide a useful feature 
representation about the specifics of the domain.

In this paper, we review tensor based statistical models and as-
sociated inference methods developed recently for audio and mu-
sic processing and describe various extensions and applications of 
these models. In Section 2, we illustrate the ideas of factorization 
based modeling, and then in Section 3 we describe a probabilis-
tic interpretation of these models. The probabilistic interpretation 
opens up the way for a full Bayesian treatment via Bayesian hierar-
chical modeling. This leads to a very natural means for unification, 
allowing the formulation of highly structured probabilistic models 
for audio data at the various levels of abstraction, as we will il-
lustrate in Section 6. The paper concludes with remarks on future 
research directions.

2. Factorization-based data modeling

In this section, we will describe the basics of factorization 
based modeling, and describe extensions such as coupled tensor 
factorizations and nonnegative decompositions. This section will 
describe the main structure and the notation.

In many applications, data can be represented as a matrix, for 
example, the spectrogram of an audio signal (frequency vs time), 
a dataset of images (pixel coordinates vs instances), word frequen-
cies among different documents (words vs documents), and the 
adjacency structure of a graph (nodes vs nodes) to name a few. 
Here the indices of the matrix correspond to the entities, and the 
matrix elements describe a relation between the two entities. Ma-
trix Factorization (MF) models are one of the most widely used 
methods for analyzing the data that involve two entities [7–10]. 
The goal in these models is to calculate a factorization of the form:

X1(i, j) ≈ X̂1(i, j) =
∑

k

Z1(i,k)Z2(k, j) (1)

where X1 is the given data matrix, X̂1 is an approximation to 
X1, and Z1, and Z2 are factor matrices to be estimated. Even 
though we have a single observed matrix in this model, we use 
a subscript in X1 since we will consider factorization models that 
involve more than one observed matrix or tensor, later in this sec-
tion. Here, X1 is expressed as the product of Z1 and Z2, where 
Z1 is considered as the dictionary matrix and Z2 contains the cor-
responding weights. From another perspective, X1 is approximated 
as the sum of inner products of the columns of Z1 and the rows 
of Z2, as illustrated at the top of Fig. 2. Note that, if Z1 would 
have been fixed, the problem would have been equivalent to ba-
sis regression where the weights (expansion coefficients) Z2 are 
estimated [11]. In contrast, in matrix factorization the dictionary 
(the set of basis vectors) is estimated along with the coefficients. 
This modeling strategy has been shown to be successful in vari-
ous fields including signal processing, finance, bioinformatics, and 
natural language processing [8].

Matrix factorization models are applicable when the observed 
data encapsulates the relation of two different entities (e.g., i and 
j in Eq. (1)). However, when the data involves multiple entities 

Fig. 1. Illustration of a) a vector X(i): an array with one index, b) a matrix X(i, j) an 
array with two indices, c) a tensor X(i, j, k): an array with three or more indices. In 
this study, we refer vectors as tensors with one mode and matrices as tensors with 
two modes.

of interest, such as ternary or higher order relations it cannot be 
represented without loss of structure by using matrices. For ex-
ample a multichannel sound library of several instances may be 
represented in the time-frequency domain conveniently as an ob-
ject with several entities, say the power at each (frequency, time, 
channel, instance). One could in principle ‘concatenate’ each spec-
trogram across time and instances to obtain a big matrix, say (fre-
quency × channel, time × instance) but this representation would 
obscure important structural information – compare simply with 
representing a matrix with a column vector. Hence one needs nat-
urally multiway tables, the so-called tensors, where each element 
is denoted by T (i, j, k, . . .). Here, T is the tensor and the indices 
i, j, k, . . . are the entities. The number of distinct entities dictates 
the mode of a tensor. Hence a vector and a matrix are tensors of 
mode one and two respectively. Tensors are illustrated in Fig. 1 and 
we will give a more precise and compact definition in Section 3.

For modeling multiway arrays with more than two entities 
the canonical polyadic decomposition [12,13] (also referred as, CP, 
PARAFAC, or CANDECOMP) is one of the most popular factorization 
models. The model, for three entities, is defined as follows:

X2(i,m, r) ≈ X̂2(i,m, r) =
∑

k

Z1(i,k)Z3(m,k)Z4(r,k) (2)

where the observed tensor X2 is decomposed as a product of three 
different matrices. Analogous to MF models, this model approxi-
mates X2 as the sum of ‘inner products’ of the columns of Z1, Z3, 
and Z4 as illustrated at the bottom of Fig. 2. This model has been 
shown to be useful in chemometrics [14], psychometrics [12], and 
signal processing [8].

Tucker model [15] is another important model for analyz-
ing tensors with three modes, which is a generalization of the 
PARAFAC model. The model is defined as follows:

X3(i, j,k) ≈ X̂3(i, j,k)

=
∑

p

∑
q

∑
r

Z1(i, p)Z2( j,q)Z3(k, r)Z4(p,q, r) (3)

where X3 is expressed as the product of three matrices (Z1:3) and 
a ‘core tensor’ (Z4). When the core tensor Z4 is chosen as super 
diagonal (Z4(p, q, r) �= 0 only if p = q = r), Tucker decomposition 
reduces to PARAFAC.

2.1. Coupled factorization models

In certain applications, information from different sources are 
available and need to be combined for obtaining more accurate 
predictions [16–20]. In musical audio processing, one example is 
having a large collection of annotated audio data and a collection 
of symbolic music scores as side information. Similarly, in prod-
uct recommendation systems, a customer–product rating matrix
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