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In this paper, we explore the multiple source localisation problem in the cerebral cortex using 
magnetoencephalography (MEG) data. We model neural currents as point-wise dipolar sources which 
dynamically evolve over time, then model dipole dynamics using a probabilistic state space model in 
which dipole locations are strictly constrained to lie within the cortex. Based on the proposed models, 
we develop a Bayesian particle filtering algorithm for localisation of both known and unknown numbers 
of dipoles. The algorithm consists of a region of interest (ROI) estimation step for initial dipole number 
estimation, a Gibbs multiple particle filter (GMPF) step for individual dipole state estimation, and a 
selection criterion step for selecting the final estimates. The estimated results from the ROI estimation 
are used to adaptively adjust particle filter’s sample size to reduce the overall computational cost. The 
proposed models and the algorithm are tested in numerical experiments. Results are compared with 
existing particle filtering methods. The numerical results show that the proposed methods can achieve 
improved performance metrics in terms of dipole number estimation and dipole localisation.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, the development of non-invasive brain signal 
measuring techniques such as MEG and electroencephalography 
(EEG) have seen rapid progress. These techniques are helpful in 
diagnosis of mental diseases such as epilepsy, Alzheimer’s and 
Parkinson’s disease [1,2]. In non-invasive brain signal processing, 
we are particularly interested in the signal generated from the 
cerebral cortex which is the outer layer of the cerebrum [3,4]. Cor-
tical activity in different cortical regions (such as somatosensory, 
visual, motor or auditory cortex) can be elicited by suitable stim-
uli (such as an image or a piece of song). A single active neuron is 
too weak to be measured directly, so tens of thousands of syn-
chronously active neurons are needed to produce a measurable 
brain signal. For modelling purposes, many spatially neighbour-
ing active neurons can be summarised and modelled as a dipolar 
current source, which can be simply named as a “dipole”. The elec-
tromagnetic field generated by such a dipolar source is measurable 
using MEG/EEG devices.

Brain source localisation is fundamentally an ill-posed inverse 
problem [2,4]. The main barrier is that there may exist many pos-
sible solutions for the same set of data, and hence no unique 
solution can be obtained in the general case. In this paper, we aim 
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to accurately localise the spatio-temporal brain sources using the 
electromagnetic signals collected outside the surface of the head, 
employing physiological constraints and soft prior information to 
regularise the undetermined problem.

1.1. Related work

Brain source localisation is an active research field where a sig-
nificant amount of work has been done in the past two decades 
(see, e.g., [3–15] and the references therein).

There are two main types of methods: distributed source ap-
proaches, and point-wise dipole approaches [3]. Distributed source 
methods identify the potential active brain sources that are dis-
tributed on a dense grid of fixed locations throughout the whole 
cerebral cortex (or the whole brain volume if under a looser con-
straint). Since the number of unknown sources is larger than the 
number of the M/EEG sensors, mathematical assumptions or con-
straints are required for a unique solution. Some existing meth-
ods include the least squares minimum norm estimation (MNE) 
[3], dynamic statistical parametric mapping (dSPM) [16], standard-
ised low-resolution electromagnetic tomography (sLORETA) [5], 
and Kalman filter related approaches [8,6].

On the other hand, point-wise dipole approaches treat the 
brain currents as point dipole sources, and estimate the states 
(this may include dipole location, moment, and orientation) of 
the point source dipoles. In this type of modelling, the state 
of each dipole source is treated as a random unknown target. 
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A number of works have been published under this type of mod-
elling; these include multiple signal classification (MUSIC) related 
approaches [17], Markov chain Monte Carlo related approaches 
[18,7], and sequential Monte Carlo (or particle filtering) related ap-
proaches [9,12,13,15,14].

Among the various methods proposed, Bayesian particle filter-
ing seems one of the most promising methods for tackling the 
source localisation problem. In this paper, we develop a point-wise 
dipolar source localisation approach using Bayesian particle filter-
ing.

1.2. Bayesian particle filtering methods for dipole localisation problem

Particle filtering methods have been developed for this applica-
tion over the last decade. Somersalo et al. [9] applied a sequential 
importance resampling (SIR) particle filter for the dipole locali-
sation problem using artificial planar/3D geometry. Results of a 
two-dipole localisation example was shown using an ideal spher-
ical head model. Campi et al. [12] proposed a Rao–Blackwellised 
particle filter (RBPF) for dipole tracking with single dipole and 
two dipole examples. It was shown in that work that the RBPF 
provided better localisation results with lower computational cost 
than those from a standard particle filter. Sorrentino et al. [13] in-
tegrated a random finite set scheme into the particle filter. The 
method was able to track a time-varying number of dipoles with 
the maximum dipole number specified in advance.

Recently, Sorrentino et al. [15] suggested to model the problem 
using a static dipole setup. The work employed a resample-move 
particle filter to recursively estimate the dipole moment. Chen et 
al. [19,20] integrated an MNE step into a multiple particle filter 
method to localise an unknown number of dipoles. The estimation 
of the dipole number relied on both the MNE step and the pre-
vious localisation history. Miao et al. [14] also adopted a multiple 
particle filter method to localise multiple dipoles, using a prob-
ability hypothesis density (PHD) filter to perform the estimation 
of the unknown/time-varying dipole number. The algorithm was 
implemented and assessed in a real-time field-programmable gate 
array (FPGA) board. However, it modelled the brain under the ideal 
spherical head model, which cannot provide a realistic description 
of the true human brain.

1.3. Our work

In this paper, we propose a Gibbs multiple particle filtering 
(GMPF) algorithm for the multiple dipole source localisation prob-
lem. The work is developed based on our previous work [19,20]. 
The contribution of this work is described as follows.

Firstly, a continuous head model which forces the state dy-
namics to strictly remain on the cerebral cortex is developed. To 
fit with real world applications, we adopt a 1-layer realistic head 
model, the Nolte model [21]. Although this head model is quite re-
alistic, the off-the-shelf software implementations of it can only be 
used to evaluate the model at a discrete set of points (the mesh 
nodes). For distributed source implementations this is all that is 
needed. However, in our case we need a smooth manifold which 
defines the cortex surface and hence the discrete set of points is 
not enough. For this purpose, we adopt a nearest-neighbour (NN) 
interpolation method to form an approximate continuous cortical 
manifold. This allows us to formulate the particle filter state di-
rectly in terms of the location on the continuous cortex surface.

Secondly, we develop a particle filtering algorithm by integrat-
ing a Gibbs sampling iteration step into a multiple particle filtering 
(MPF) [19] algorithm. Instead of running each component of the 
MPF only once at each time step, the GMPF iteratively runs the 
individual components, conditional on the state of the remaining 
sources, until the state samples converge. This enables the MPF to 

iterate to obtain a stable state estimate prior to entering the next 
time step.

Thirdly, we develop a dipole number dynamic model along 
with the GMPF method [22,23] for localisation with an unknown 
dynamic number of dipoles. The model generates three poten-
tial dipole number predictions based on the estimate from the 
previous time step. All three predictions are examined and their 
corresponding state estimates are calculated. A selection criterion 
is then applied to obtain the optimal prediction results in each 
time step. Although approximate in a Bayesian sense, this approach 
improves the accuracy in estimating the number of dipoles, and 
thereby improves the overall localisation performance of GMPF.

Finally, we apply a computationally adaptive scheme to adjust 
the number of particles and the state transition range at each 
step of the algorithm run. In order to generate candidate num-
bers of sources at each time step, we integrate a standard noise 
normalised MNE method [3] and a spatial clustering method [24]
to gain some knowledge on the potential dipolar sources. These 
prior information are used to evaluate the localisation accuracy. 
We could then adjust the particle size and the state dynamic space 
in the next algorithm run.

The remainder of the paper is organised as follows. Section 2
introduces the data modelling procedure. A discrete/continuous 
head model, a dipole state transition model, and a dipole num-
ber dynamic model are described in this section. The localisation 
algorithm is proposed in Section 3. Both the models and the algo-
rithms are evaluated in Section 4. Section 5 concludes the article.

2. Data model

We consider a clinical application using an MEG system with 
M = 204 magnetometers – the proposed method can be applied to 
other M/EEG settings with slight modifications. Here we use the 
204-sensor MEG application as an example. All the sensors are 
placed outside the brain surface to obtain non-invasive measure-
ments. We are interested to infer the neural activities within the 
brain cortical region. The state space is constrained to lie within 
the cerebral cortex and is denoted as �.

For MEG data, a 1-layer realistic head model is introduced to 
generate the lead-field matrix (the forward matrix), based on a 
total of G fixed vertices on the cortex. An NN (nearest neighbour) 
interpolation method is used to interpolate the locations between 
these vertices.

As described above, the head model comprises G vertices, 
{g1 · · ·gν · · ·gG}; and F triangular faces on the surface of the cor-
tex, created assuming a 1-shell Nolte model for MEG. The width 
of the head model is 136 mm, and the distance between two ad-
jacent vertices varies between 2.3 mm to 8.4 mm. The lead-field 
matrix L was generated using the statistical parametric mapping 
(SPM) software [25]. Although L provides a relatively accurate ap-
proximation for the source distribution in the cortical space, it is 
discretised artificially to a limited number of fixed-location points. 
We first introduce the traditional discrete real head model using L. 
The neural current density is, by contrast, in reality a continuous 
spatial flow. For this reason, we then propose an interpolated real-
istic head model for continuous point-wise dipole localisation.

Fig. 1 shows the triangulation of the cortex. The blue dots are 
the pre-defined vertices on the cerebral cortex, and the 5 coloured 
small areas are example sub-planes that represent the individual 
triangular faces on the cortex. In order to better fit real world ap-
plications, we strictly enforce that the trajectory of a point-wise 
dipolar source lies within the modelled cerebral cortex. Each in-
dividual dipolar source may only move within a single triangular 
cortical region defined by the fixed vertices and the triangular 
faces. Thus we model each dipole as semi-static within a small 
spatial volume for the whole observation interval.
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