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a b s t r a c t

System health diagnostics provides diversified benefits such as improved safety, improved
reliability and reduced costs for the operation and maintenance of engineered systems.
Successful health diagnostics requires the knowledge of system failures. However, with an
increasing system complexity, it is extraordinarily difficult to have a well-tested system so
that all potential faulty states can be realized and studied at product testing stage. Thus, real
time health diagnostics requires automatic detection of unexampled system faulty states
based upon sensory data to avoid sudden catastrophic system failures. This paper presents a
trifold hybrid classification (THC) approach for structural health diagnosis with unexampled
health states (UHS), which comprises of preliminary UHS identification using a new
thresholded Mahalanobis distance (TMD) classifier, UHS diagnostics using a two-class
support vector machine (SVM) classifier, and exampled health states diagnostics using a
multi-class SVM classifier. The proposed THC approach, which takes the advantages of both
TMD and SVM-based classification techniques, is able to identify and isolate the unexampled
faulty states through interactively detecting the deviation of sensory data from the
exampled health states and forming new ones autonomously. The proposed THC approach
is further extended to a generic framework for health diagnostics problems with unex-
ampled faulty states and demonstrated with health diagnostics case studies for power
transformers and rolling bearings.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Real-time health diagnosis of engineered systems interprets data acquired by smart sensors and distributed sensor
networks and utilizes these data streams for critical lifecycle decision-makings [1–4]. System health diagnostics has been
developed and promoted by various successfully engineered applications, including bearings [5,6], machine tools [7],
transformers [8], engines and wind turbines [9,10] among many others. System health diagnostics provides diversified
benefits such as improved safety, improved reliability and reduced costs for the operation and maintenance of complex
engineered systems. Maintenance and life-cycle management is one area that is positioned to significantly benefit in this
regard due to the pervasive nature of maintenance activities throughout both the manufacturing and service sectors.
Maintenance and life-cycle management activities constitute a large portion of overhead costs in many industries [2]. These
costs are likely to increase due to the rising competition in today's global economy. In the manufacturing and service sectors,
unexpected breakdowns can be prohibitively expensive since they immediately result in lost production, failed shipping
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schedules, and poor customer satisfaction. In order to reduce and possibly eliminate such problems, real-time health
diagnostics plays an increasingly important role, which requires automatic detection of system anomalies and adverse
events in an early stage so that potential catastrophic system failures can be avoided. Successful implementation of system
health diagnostics relies on not only advanced sensing technology, but more importantly the understanding of relationships
between the features of multidimensional sensory signals and the underlining system health conditions [1]. In health
diagnostics, the condition of an operating system is usually described by different health states (HSs) (for example, healthy,
faulty state due to different component failures, etc.), and in general there are two categories of HSs distinguished based on
the prior knowledge of the system: namely the exampled HS (EHS) and the unexampled HS (UHS). The EHS represents a
category of system health conditions that the features of the sensory signals from them are clearly understood, and normally
shown as training data. On the contrary, the UHS represents a category of system health conditions that the features of the
sensory signals from them are not understood and normally shown as no prior knowledge or training data available. With
an increasing system complexity, it is extraordinarily difficult to have a well-tested system so that all potential faulty states
can be realized and studied at product testing stage. Thus, real time health diagnostics requires not only accurate
identification of EHS, but also automatic detection of UHS through multidimensional sensory signals, as the misidentifica-
tion or ignorance of UHS could lead to catastrophic system failures.

Although it is important to handle UHS in system health diagnostics, however, a rich literature has been focused on the
anomaly detection, also referred to as outlier detection. Different with the classification of different HSs for health
diagnostics, the anomaly detection aims at detecting patterns in a given data set that do not conform to an established
normal behavior [11–20]. In general, three broad categories of anomaly detection techniques exist. Unsupervised anomaly
detection techniques detect anomalies in an unlabeled test data set under the assumption that the majority of the instances
in the data set are normal by looking for instances that seem to fit least to the remainder of the data set. Supervised anomaly
detection techniques require a data set that has been labeled as “normal” and “abnormal” and involves training a classifier.
Semi-supervised anomaly detection techniques construct a model representing normal behavior from a given normal
training data set, and then testing the likelihood of a test instance to be generated by the learnt model. Hodge et. al [21] and
Varun et. al [22] provide a good survey of the state-of-the-art anomaly detection techniques and applications. Compared
with anomaly detection, the UHS identification are more challenging in that (1) in particular in the context of UHS
identification, the sensory signal features from UHS are often not rare occurrences, but they are from unexampled health
states. This pattern does not adhere to the common statistical definition of an outlier as a rare object, and many outlier
detection methods, in particular unsupervised methods, will fail on such data; and (2) the UHS identification generally
involves more number of HSs than the “normal” and “abnormal” in the anomaly detection.

Despite the studies in the outlier detection, existing approaches have been mainly focused on correct identification of
EHS from sensory signals, given the importance of handling both EHS and UHS in health diagnostics. Several advanced HS
classification approaches have been developed to accomplish the task of EHS identification through comparing online
sensory signal features with the offline training data. Based on the working principles, these approaches can be generally
categorized into two categories: artificial intelligence (AI) based techniques [11–13] and statistics inference based
techniques [14–20]. The AI based diagnostics techniques involve a process of learning the relationship between input
parameters and the desired target values in the form of set of patterns. Examples of AI based diagnostics techniques out of
many include back-propagation neural network [23–27], deep belief networks [28–30], self-organizing maps [27,31], and
genetic algorithm [32,33]. There are also some kernel based machine learning techniques in which the support vector
machine (SVM) is one of the most popular methods for health diagnostics applications [34–38]. The key advantage of
employing the kernel based machine learning technique is achieving an optimized classification solution while introducing
the desired sparseness of training samples. Besides the AI based diagnostics techniques, there are statistical inference based
classification approaches, such as Mahalanobis distance (MD) classifiers [39], k-nearest neighbor method [40] and k-mean
clustering [41]. These classification approaches partition a set of patterns into different disjoint clusters based on certain
statistical distance measure. The MD classifier is one of the popular statistical inference approaches, which determines the

Nomenclature

AI artificial intelligence
HS health state
EHS exampled health state
UHS unexampled health state
MD Mahalanobis distance
SVM support vector machine
TMD thresholded Mahalanobis distance
n total number of initial EHS
r total number of training data points
xi p-dimensional input vector, where 1r irr

yi class label of ith data
MDij Mahalanobis distance of the ith dataset with

reference to jth HS, where 1r jrn
C penalty parameter
mj mean vector of the training data
sj variance matrix of the training data
w normal vector perpendicular to hyper plane
b offset of the hyper plane
αi lagrangian multiplier
ξi slack variable
k(x,xi) kernel function based on hyper plane
φ(x) high dimensional feature space mapping
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