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It is recently shown that algorithms derived from random matrix theory (RMT) can provide superior
performance for spectrum sensing, which corresponds to the task of detecting the presence of primary
users in cognitive radio. The essence of the RMT-based methods is to utilize the distribution of
extremal eigenvalues of the received signal sample covariance matrix (SCM), namely, the Tracy–Widom
(TW) distribution. Although the TW distribution is quite useful in spectrum sensing, computationally
demanding numerical evaluation is required because it does not have an explicit closed-form expression.
In this paper, we devise two novel volume-based detectors by exploiting the determinant of the SCM or
volume to distinguish between the signal-presence and signal-absence cases. With the use of RMT, we
accurately produce the theoretical decision threshold for one of the detectors under the Gaussian noise
assumption. Simulation results are included to illustrate the effectiveness of the volume-based detectors.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

It has been revealed in [1] that the current policies of fixed
spectrum allocation do not fully utilize the available spectrum.
Cognitive radio (CR) [2–12], whose main idea is to sense the spec-
trum over a wide range of frequency bands and exploit the tempo-
rally unoccupied bands for opportunistic wireless transmissions, is
a promising paradigm to increase the spectrum usage efficiency. In
a CR network, when the spectrum resources of a primary user (PU)
are not occupied, a secondary user (SU) is allowed to use them.
That is to say, the SU needs to reliably detect the presence of the
PU. This is referred to as spectrum sensing, which can be cast as
a binary hypothesis testing problem and is particularly challenging
for small sample size and/or low signal-to-noise ratio (SNR) condi-
tions.

For the scenario of signal-absence, the observed data only con-
sist of noise and are usually assumed to be independent and
identically distributed (IID). It is apparent that the energy and
correlation structure of the observations differ when the PU sig-
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nal is present. As a result, spectrum sensing can be achieved
by making use of these dissimilarities. When the noise power is
known, the energy detector (ED) [13,14] has been shown to be
optimal for the IID PU signals. However, the noise power infor-
mation is usually unavailable in practice and thus its estimate is
used instead [15–17]. This can dramatically degrade the detec-
tion performance of the ED approach because it is quite sensitive
to the noise uncertainty. As a matter of fact, the eigenvalues of
the received signal sample covariance matrix (SCM) in the signal-
presence situation are more spread out than those in the noise-
only case, which corresponds to a scaled identity matrix in the
asymptotic sense. The spread-out eigen-spectrum results from the
correlation structure inherent in the covariance matrix. As a result,
a number of eigenvalue-based detectors which exploit the corre-
lation structure for spectrum sensing have been proposed in the
literature [18–25]. Derived in the framework of generalized like-
lihood ratio test (GLRT), the arithmetic-to-geometric mean (AGM)
method [18] is able to reliably identify the correlated signals em-
bedded in the IID noise. However, the AGM algorithm has its root
in the maximum likelihood (ML) theory which turns out to be inef-
ficient when the temporal and spatial dimensions are small, that is,
the theoretical decision threshold cannot be accurately determined.
On the other hand, the maximum-to-minimum eigenvalue (MME)
approach [19] is heuristically developed to test if the SCM corre-
sponds to an identity matrix or its correlated alternative with the
use of its maximum and minimum eigenvalues. Since not all eigen-
values are utilized, its detection performance is highly sensitive
to weak correlated signals and/or small sample sizes. Moreover,
computation of the theoretical threshold for the MME algorithm
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Fig. 1. Volume comparison for uncorrelated, correlated and coherent observations.

relies on the distribution of the maximum and minimum eigenval-
ues in the framework of random matrix theory (RMT), namely, the
Tracy–Widom (TW) distribution [26]. However, there is no explicit
closed-form expression for the TW distribution, indicating that an
additional overhead of numerical evaluation is required. For the
situation where there is only a single primary signal, an accu-
rate variant of the GLRT has been devised for spectrum sensing
in [24], which is equivalent to the signal-to-noise (mean) eigen-
value (SNE) method [21]. As discussed in [27,30], nevertheless, the
number of primary signals in the sensed channel can be more than
one. Under such a condition, the performance of the SNE method
cannot be guaranteed. In practice, the SU receivers are usually
uncalibrated, making the noises at different antennas to be non-
uniform. To handle the non-uniform noise, some robust sensing
approaches have been proposed, such as the GLRT test [28], inde-
pendence test [29], Hadamard ratio test [27,30] and locally most
powerful invariant test (LMPIT) [31]. In this work, a new philos-
ophy for spectrum sensing is devised to accurately and robustly
detect the PUs in a computationally attractive manner. The un-
derlying idea is that the determinant of SCM or volume differs
dramatically between the signal-absence and signal-presence sit-
uations.

The rest of the paper is organized as follows. The problem
formulation of spectrum sensing is presented in Section 2. In Sec-
tion 3, prior to deriving the volume-based detectors, the motiva-
tion is provided via geometric interpretation. Then two volume-
based detectors, denoted by VD1 and VD2, are developed for spec-
trum sensing. With the use of RMT, the theoretical decision thresh-
old of the VD2 is accurately determined and no numerical proce-
dure is involved. Simulation results are included in Section 4 to
evaluate the performance of the proposed detectors by comparing
with the ED, AGM, MME, Hadamard ratio and SNE methods. Fi-
nally, conclusions are drawn in Section 5.

2. Problem formulation

Consider a multipath fading channel model and assume there
are 1 PU and (d − 1) interference users with d � 1, and each of
them is equipped with a single antenna in a CR network. To sim-
plify the following presentation, the interference users are now
counted as PUs because they occupy the same channel, that is,
there are d PUs. To find a temporally unoccupied channel, a SU re-
ceiver with m antennas needs to monitor this channel. Denote the
signal-absence and signal-presence hypotheses by H0 and H1, re-
spectively. The output observations of the SU, y(k) (k = 1, . . . ,n),
under the binary hypotheses can be written as

y(k) =
{

w(k), H0
H s(k) + w(k), H1

(1)

where n is the number of samples, H ∈R
m×d represents the fading

channels between the PUs and SU, and

y(k) = [
x1(k), . . . , xm(k)

]T
(2)

s(k) = [
s1(k), . . . , sd(k)

]T
(3)

w(k) = [
w1(k), . . . , wm(k)

]T
(4)

stand for the observation, signal and noise vectors, respectively,
with (·)T being the transpose operator. Unless stated otherwise,
the channels, primary signals and noise are considered to be real-
valued1 throughout this paper. We assume that the noises are sta-
tistically independent and satisfy wi(k) ∼ N (0, σ 2

wi
) (i = 1, . . . ,m)

where σ 2
wi

is the unknown noise variance, ∼ represents “dis-
tributed as” and N (μ,Σ) denotes the Gaussian distribution with
mean μ and variance Σ . If σ 2

wi
= σ 2

w for i = 1, . . . ,m, the noise
becomes IID (uniform); otherwise, it is the non-uniform noise due
to the uncalibrated receiver [28,32]. Meanwhile, suppose that si(k)

(i = 1, . . . ,d) is a random process with mean zero and unknown
variance σ 2

si
, which is independent of the noise. Note that the pri-

mary signal vector s(k) is unnecessarily Gaussian distributed. In
order to exploit the correlation structure inherent in the observa-
tions, we employ the covariance matrix of y(k), given as

R = E
[

y(k)yT (k)
]

(5)

where E[·] is the expectation operator.

3. Volume-based detector for spectrum sensing

3.1. Geometric interpretation

The determinant of R in fact is the hyper-volume of the ge-
ometry determined by the row vectors of R . As an example, let
us consider the scenario of three receiving antennas where the
observed data with zero mean and unity variance may be inde-
pendent, correlated or coherent. This means that the correspond-
ing covariance matrices are the 3 × 3 identity matrix, full-rank
non-identity matrix and rank-one arbitrary matrix. The geome-
tries, namely, cube, parallelepiped and line, formed by the row
vectors of the matrices are depicted in Fig. 1, where all edges of
the geometries are assumed to be unity such that ‖R(i, :)‖ = 1
with R(i, :) being the i-th row of R and ‖ · ‖ being the Euclidean
norm. Here, the volumes of the cube, parallelepiped and line, are
denoted by v1, v2 and v3, respectively. The cube corresponds to
the case of signal-absence whereas the other two geometries are
referring to the cases of signal-presence. For the signal-absence sit-
uation, the covariance matrix is a 3×3 identity matrix, i.e., R = I 3,
whose rows determine the coordinates of the points b, f and d
in Fig. 1(a), that is, (xb, yb, zb) = (1,0,0), (x f , y f , z f ) = (0,1,0),
(xd, yd, zd) = (0,0,1). Consequently, we obtain v1 = 1. For the

1 The proposed methods can be readily applied to the complex-valued case by
transforming the complex observation to its real counterpart, see [33] for example.
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