HLC 2131 No. of Pages 13

ARTICLE IN PRESS

Heart, Lung and Circulation (2016) xx, 1–13 1443-9506/04/\$36.00 http://dx.doi.org/10.1016/j.hlc.2016.04.027

Periprocedural Management of Novel Oral Anticoagulants During Atrial Fibrillation Ablation: Controversies and Review of the Current Evidence

Hany S. Abed, B. Pharm., MBBS, FRACP, PhD^{a,c,d}, Vivien Chen, MBBS, BA, FRACP, PhD, FRCPA^{b,d}, Michael J. Kilborn, MBBS, FRACP, PhD^{a,c,d}, Raymond W. Sy, MBBS, FRACP, PhD^{a,c,d*}

^aDepartment of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia ^bDepartment of Haematology, Concord Repatriation General Hospital, Sydney, NSW, Australia ^cDepartment of Cardiology, Concord Repatriation General Hospital, Sydney, NSW, Australia ^dUniversity of Sydney, NSW, Australia

Received 6 September 2015; received in revised form 5 April 2016; accepted 28 April 2016; online published-ahead-of-print xxx

Oral anticoagulation (OAC) has been the cornerstone for the prevention of thromboembolic complications in patients with atrial fibrillation (AF) at significant risk of stroke. Catheter ablation is an established efficacious technique for the treatment of AF. Ameliorating the risk of stroke or transient ischaemic attack (TIA) in patients with AF undergoing ablation requires meticulous planning of pharmacotherapy. The advent of non-vitamin K oral anticoagulants (NOACs) has broadened the therapeutic scope, representing a viable alternative to traditional vitamin K antagonists (VKA) in non-valvular AF. Potential advantages of NOACs include greater pharmacokinetic predictability, at least comparable efficacy as compared to VKA and a superior haemorrhagic complication profile. However, robust evidence for the safety and efficacy of periprocedural NOAC use for AF ablation remains uncertain with a non-uniform clinical approach between and within institutions.

The following review will summarise the current and emerging evidence on periprocedural management of NOACs in patients undergoing catheter ablation of AF. An overview of NOAC pharmacology will provide a foundation for the review of reversal agents in the context of catheter ablation of AF. The purpose of the review is to outline key studies and identify key areas for further critical research with the ultimate aim of developing evidence-based guidelines for optimal care.

Keywords

Non-vitamin K antagonists • Atrial fibrillation ablation • Peri-procedural

Introduction

Traditional use of VKAs has been fraught with difficulties in compliance with periodic blood sampling and maintenance of a therapeutic international normalised ratio (INR). The emergence of NOACs appears to have simplified anticoagulation therapy for patients and physicians, primarily through more predictable pharmacodynamics. Current NOACs are either direct inhibitors of Factor IIa (FIIa) or Factor Xa (FXa). The pharmacological and pharmacokinetic profiles of the four currently available agents; dabigatran, rivaroxaban, apixaban and most recently edoxaban, are outlined in Table 1.

Atrial fibrillation confers a cerebral thromboembolic risk of 1% to 18% per annum, depending on validated scoring

*Corresponding author at: Department of Cardiology Royal Prince Alfred Hospital, Missenden Rd, Camperdown, NSW 2050, AUSTRALIA Tel.: +612 9515 8063; fax: +612 9550 6262, Email: raymond.sy01@gmail.com

© 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

Please cite this article in press as: Abed HS, et al. Periprocedural Management of Novel Oral Anticoagulants During Atrial Fibrillation Ablation: Controversies and Review of the Current Evidence. Heart, Lung and Circulation (2016), http://dx.doi. org/10.1016/j.hlc.2016.04.027

2

ARTICLE IN PRESS

	Dabigatran	Rivaroxaban	Apixaban	Edoxaban
Dosage (mg) and frequency	150 twice daily	20 once daily	5 twice daily OR	60 daily OR
	(CrCl≥50mL/min) OR	(CrCl≥50mL/min)	2.5 twice daily	30 daily
	110 twice daily	OR 15 once daily	(Age≥80 or weight≤60 kg	(CrCl 15-50mL/min or
	(CrCl 30-50mL/min or age \geq 75 years)	(CrCl 30-50mL/min)	or serum Cr≥133 umol/L)	weight≤60kg)
Mechanism of action	Direct thrombin	Direct factor Xa	Direct factor Xa inhibition	Direct factor Xa
	inhibition of bound and fibrin free	inhibition		inhibition
T _{max} (Time to peak concentration, hr)	2	2.5-4	1-3	1-2
$T_{1/2}$ (Half-life, hr)	12-17	5-9	8-15	10-14
Plasma protein binding (%)	35	95	87	55
Cellular efflux protein	Yes	Yes	Yes	Yes (but no inhibition
P-glycoprotein ligand				of pump function)
Hepatic cytochrome binding	No effect on plasma	CYP3A4, CYP 2J2 and	СҮРЗА4, СҮРЗА5	Minimal metabolism
	levels in moderate hepatic impairment	non-cytochrome dependent pathways		by CYP3A4
Metabolism and excretion	Renal 85% unchanged	66% metabolised and	25% metabolised,	Renal 50% unchanged
	excretion	renal 33%	27% renal clearance,	excretion, 50%
	excitentia	unchanged excretion	gastrointestinal excretion	unchanged
			8	gastrointestinal excretion
Effects of renal impairment	Increase in AUC, T _{max}	Inverse relationship	Inverse relationship	Inverse relationship
	and $T_{1/2}$ with	between CrCL and	between CrCL and	between CrCL and
	decreased in CrCL*	AUC, anti-factor Xa	AUC, however no	AUC§
		activity and PT*	correlation with	
		2	anti-factor Xa activity*	
Weight impact on	50% greater trough	Negligible effect.	<50 kg associated	13% greater AUC
trough levels	levels in <50 kg	No dose adjustment	with 30% increase	in <55 kg compared
	compared to >100kg	necessary	in AUC and >120 kg	to >84kg
	1 0	2	associated with 30%	U
			decrease in AUC [‡]	
Impact of age	Compared to <65yrs,	AUC 1.5-fold higher	AUC 32% higher in	No impact independent
	28% higher trough	in elderly but no	>65yrs compared	of age-related changes
	levels in 65-75yrs,	dose adjustment	to <65yrs‡	in body weight and
	68% higher in >75yrs	necessary		renal function

Table 1 Pharmacokinetic and pharmacodynamic profiles of currently available NOACs non-valvular AF.

 \ddagger No dose adjustment required unless weight \le 60 kg, age \ge 80yrs or renal impairment (creatinine \ge 133umol/L). * Contraindicated in severe renal impairment (CrCL < 30 mL/min). § Absolute contraindication in non-valvular atrial fibrillation patients with CrCl >95 mL/min., based on clinical trial data. AUC denotes area under curve. CrCL denotes creatinine clearance.

algorithms incorporating ancillary demographic, vascular and other cardiometabolic risk factors. Recent large international surveys of patients undergoing catheter ablation of AF, estimate a periprocedural risk of cerebral thromboembolism and cardiac tamponade at 0.94% and 1.31%, respectively [1]. Mitigating these risks requires a systematic approach to pre-, intra- and post-procedural management of NOAC therapy. Current areas of significant uncertainty are:

- The safety and efficacy of peri-procedural NOAC therapy. Specifically, the impact on minor bleeding, major bleeding and thromboembolic complications, including "silent" cerebral ischaemia.
- A unified definition of "uninterrupted therapy" and "minimally interrupted therapy", the latter implying dose omission or modification pre-procedure.
- The role of pre-procedural transoesophageal echocardiography to evaluate for LA thrombus.
- The effect of OACs on intra-procedural in vivo anticoagulation and/or potential interference with various coagulation assays in vitro, in particular the activated clotting time (ACT).
- The optimal NOAC resumption strategy post-procedure.
- The management of bleeding complications and potential clinical use of ligand-specific reversal agents.

Please cite this article in press as: Abed HS, et al. Periprocedural Management of Novel Oral Anticoagulants During Atrial Fibrillation Ablation: Controversies and Review of the Current Evidence. Heart, Lung and Circulation (2016), http://dx.doi. org/10.1016/j.hlc.2016.04.027

Download English Version:

https://daneshyari.com/en/article/5603003

Download Persian Version:

https://daneshyari.com/article/5603003

Daneshyari.com