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Pulse-Doppler radar has been successfully applied to surveillance and tracking of both moving and
stationary targets. For efficient processing of radar returns, delay–Doppler plane is discretized and FFT
techniques are employed to compute matched filter output on this discrete grid. However, for targets
whose delay–Doppler values do not coincide with the computation grid, the detection performance
degrades considerably. Especially for detecting strong and closely spaced targets this causes miss
detections and false alarms. This phenomena is known as the off-grid problem. Although compressive
sensing based techniques provide sparse and high resolution results at sub-Nyquist sampling rates,
straightforward application of these techniques is significantly more sensitive to the off-grid problem.
Here a novel parameter perturbation based sparse reconstruction technique is proposed for robust delay–
Doppler radar processing even under the off-grid case. Although the perturbation idea is general and can
be implemented in association with other greedy techniques, presently it is used within an orthogonal
matching pursuit (OMP) framework. In the proposed technique, the selected dictionary parameters are
perturbed towards directions to decrease the orthogonal residual norm. The obtained results show that
accurate and sparse reconstructions can be obtained for off-grid multi target cases. A new performance
metric based on Kullback–Leibler Divergence (KLD) is proposed to better characterize the error between
actual and reconstructed parameter spaces. Increased performance with lower reconstruction errors are
obtained for all the tested performance criteria for the proposed technique compared to conventional
OMP and �1 minimization techniques.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In many engineering and science applications the objective is
to reconstruct an image or a map of the underlying sensed dis-
tribution from available set of measurements. Specifically in radar
imaging a spatial map of reflectivity is reconstructed from mea-
surements of scattered electric field. State of the art radar systems
operate with large bandwidths or high number of channels which
generate very large data sets for processing. On the other hand
in most of the radar applications the reflectivity scene consists of
small number of strong targets. In both cases, significant amount
of data is processed mainly to estimate delay and Doppler of rel-
atively few targets. This point raises the applicability of sparse
signal processing techniques for radar signal processing.

The emerging field of Compressive Sensing (CS) [1–3] is a re-
cently developed mathematical framework in which the primary
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interest is to invert or reconstruct a signal x from noisy linear mea-
surements y in the form y = Φx + n. The focus of CS is to solve
this linear problem in the underdetermined case where number
of measurements is less than the number of unknowns which is
very important in decreasing the required amount of data to toler-
able levels in radar applications. For a signal x of dimension N that
has a K -sparse representation in a transform domain Ψ , as x = Ψ s
and ‖s‖0 = K , CS techniques enable reliable reconstruction of the
sparse signal s, hence x from O (K log N) measurements by solving
a convex �1 optimization problem of the following form:

min‖s‖1, subject to ‖y − ΦΨ s‖2 < ε. (1)

CS theory provides strong results which guarantee stable so-
lution of the reconstructed sparse signal for a forward matrix
A = ΦΨ if it satisfies the restricted isometry property (RIP) [4–6].
It has also been shown that random measurement matrices Φ with
i.i.d. entries guarantees the RIP of A for known basis [7].

Due to these appealing properties of CS and its important ad-
vantages for radar, recently CS has received considerable attention
in the radar research community. In one of the earliest papers on
CS applied to radar, the possibility of sub-Nyquist sampling and
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elimination of match filtering has been discussed [8]. In [9,10], ex-
perimental radar imaging results for step frequency and impulse
ground penetrating radars have been provided and later extended
in [11,12]. To exploit sparsity in the time-frequency domain, high
resolution CS-radar has been proposed in [13]. CS based SAR im-
age reconstruction techniques have been proposed in [14]. A CS
based MIMO radar has been proposed in [15] for obtaining simul-
taneous angle and Doppler information. In [16], CS is investigated
in distributed radar sensor networks. Further information on the
CS based radar applications can be found in [17] and [18].

All the above mentioned sparse reconstruction techniques
mainly discretize a continuous parameter space such as range,
Doppler or angle and generate a number of grid points where
the targets are assumed to be positioned on the nodes of the
grid. Under this assumption, the sparsity requirement of CS the-
ory is satisfied and the CS techniques provide satisfactory results.
Unfortunately, no matter how fine the grid is, the targets are
typically located in off-grid positions. It has been discussed in lit-
erature that the off-grid targets creates an important degradation
in CS reconstruction performance [19–24]. Off-grid problem is not
only observed in CS based radar but many other application areas
such as target localization [25], beamforming [26] or shape de-
tection [27], where the sparsity of the signal is in a continuous
parameter space and the sparsity basis Ψ is constructed through
discretization or griding of this parameter space.

To reduce the sensitivity of the reconstruction to the off-grid
targets, denser grids can be used. However, decreasing grid dimen-
sions causes significant increase in the coherence of the compres-
sive sensing dictionary, beyond a certain limit which causes loss
of the RIP [7]. To avoid this problem of increased coherence be-
tween dictionary columns, in [28], the dictionary is extended to
several orthogonal dictionaries and not in a single dictionary, but
in a set of them by using a tree structure, assuming that the given
signal is sparse in at least one of them. However, this strategy
depend on several set of fixed dictionaries generated through dis-
crete parametrization and the main goal is to select the best set
of fixed atoms from all dictionaries rather than focusing on basis
mismatch. In the works [21–23] the effect of basis mismatch prob-
lem on the reconstruction performance of CS is analyzed and the
resultant performance degradation levels and analytical �2 norm
error bounds are given. However these works have not offered
a systematic approach for sparse reconstruction under parametric
perturbations.

There are several approaches in literature for the basis mis-
match problem. In Continuous Basis Pursuit approach [29], recov-
ery of sparse translation invariant signals is performed and per-
turbations are assumed to be continuously shifted features of the
functions on which sparse solution is searched for. A dictionary
that includes auxiliary interpolation functions that approximates
translates of features via adjustment of their parameters is gener-
ated and �1 based minimization is used on primary coefficients.
In [24], an algorithm based on the atomic norm minimization is
proposed and the solution is found with a semi-definite program-
ming. In [30], �1 minimization based algorithms are proposed for
linear structured perturbations on the sensing matrix where per-
turbation vectors are modeled as an unknown constant multiplied
by a known vector which specifically defines the direction which
is typically unknown in practice. Works based on total least square
(TLS) as [31,32] assume that general perturbations appear both on
the dictionary and measurements. In [31] for solving TLS prob-
lem an optimization over all signal x, perturbation matrix P and
error vector spaces is performed. To reduce complexity, subopti-
mal optimization techniques have also been proposed. In [32] a
constrained total least squares technique is introduced assuming
dictionary mismatches are constrained by errors of grid points and
a joint estimate of grid point errors and signal support is found by

general TLS techniques. In [33], non-parametric perturbations in a
bounded perturbation space is considered and some reconstruction
guarantees are provided.

This paper mainly focuses on reconstruction of sparse param-
eter scenes and proposes a novel parameter perturbation based
adaptive sparse reconstruction technique to provide robust recon-
structions in the off-grid case. The proposed technique is an itera-
tive algorithm that works with a selected set of dictionary vectors
that can be obtained via one of sparse greedy techniques such as
matching pursuit (MP) [34], orthogonal matching pursuit (OMP)
[35], iterative hard/soft thresholding (IHT) [36] or the compressive
sampling matching pursuit (CoSaMP) [37]. The parameters of the
selected dictionary atoms are iteratively adapted within their grids
towards directions that decreases the residual norm. The proposed
technique presently is used within the general OMP framework
hence named as parameter perturbed OMP (PPOMP). As demon-
strated in the reconstruction of sparse delay–Doppler radar scenes,
the proposed method is successful in recovering the targets with
arbitrary positions. Compared to conventional CS reconstruction
techniques like OMP or �1 minimization, proposed PPOMP tech-
nique has achieved lower reconstruction errors for a general delay–
Doppler scene in all the conducted performance tests. The general
idea of proposed parameter perturbation can also be applied to
other areas where discrete parameters are selected from continu-
ous parameter spaces such as frequency or angle of arrival estima-
tion problems.

The organization of the paper is as follows. Section 2 outlines
the delay and Doppler data model and formulates the sparse re-
construction problem in CS framework. The proposed parameter
perturbation technique and the PPOMP algorithm is detailed in
Section 3. Simulation results on variety of examples with perfor-
mance comparisons are given in Section 4. Section 5 covers con-
clusions, and direction of possible future work.

2. Delay–Doppler radar imaging: data model and formulation

Coherent radar systems transmit a sequence of pulses with
known phases and processes the received echoes to perform clut-
ter suppression and detection at each angle of interest. Excellent
references on the operation of radar receivers are available in
the literature [38,39]. In this paper we consider a classical pulse
Doppler radar with a co-located receiver and a transmitter. Al-
though it is not investigated in here, MIMO radar systems can
also be considered within CS framework [15,40]. Let radar trans-
mits s(t), a coherent train of Np pulses:

s(t) =
N p−1∑
i=0

p(t − iTPRI)e j2π fct, (2)

where, p(t) is the individual pulse waveform, TPRI is the uniform
pulse repetition interval and fc is the radar carrier frequency. As-
suming K dominant targets with delays of τTm and Doppler shifts
of νTm , 1 � m � K , the received signal following the baseband
down-conversion can be expressed as:

y(t) =
K∑

m=1

αms(t − τTm )e j2πνTm t + n(t), (3)

where αm is the complex reflectivity of the individual targets and
n(t) is the measurement noise. The above relation between the
received signal and target parameters are expressed in terms of
the measurable quantities of delay and Doppler. These parameters
are related to the range and radial velocity of the mth target as:

τTm = 2Rm

c
, νTm = 2 fc

c
vm, (4)
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