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This paper reports an experimental result obtained by additionally using unlabeled data together with
labeled ones to improve the classification accuracy of dissimilarity-based methods, namely, dissimilarity-
based classifications (DBC) [25]. In DBC, classifiers among classes are not based on the feature
measurements of individual objects, but on a suitable dissimilarity measure among the objects instead.
In order to measure the dissimilarity distance between pairwise objects, an approach using the one-shot
similarity (OSS) [30] measuring technique instead of the Euclidean distance is investigated in this paper.
In DBC using OSS, the unlabeled set can be used to extend the set of prototypes as well as to compute
the OSS distance. The experimental results, obtained with artificial and real-life benchmark datasets,
demonstrate that designing the classifiers in the OSS dissimilarity matrices instead of expanding the set
of prototypes can further improve the classification accuracy in comparison with the traditional Euclidean
approach. Moreover, the results demonstrate that the proposed setting does not work with non-Euclidean
data.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The aim of this paper is to report an empirical result obtained
by additionally using unlabeled data together with labeled ones
to improve the classification accuracy of dissimilarity-based meth-
ods, namely, dissimilarity-based classifications (DBC) [25]. In DBC,
defining classifiers among the classes is not based on the feature
measurements of individual objects, but rather on a suitable dis-
similarity measure among the individual objects. The advantage
of this strategy is that it offers a different way to include expert
knowledge on the objects in classifying them [10]. A few of the
issues we encounter when designing DBCs are as follows: select-
ing (creating) the prototype subset from a given data set [18,21,
26]; reducing the dimensionality of the dissimilarity space [16,28];
solving non-Euclidean problems in the dissimilarity space (pseudo-
Euclidean embedding) [10]; increasing the robustness of the dis-
similarity space (or combining dissimilarity representations) [17];
optimizing classification (or clustering) based on dissimilarity in-
crements (i.e., differentiation of dissimilarity distances) [2,13].

In order to explore the other issues, various strategies have
been proposed in the literature. Among them, investigations have
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focused specifically on generalizing the dissimilarity representation
by using various methods, such as feature lines and feature planes
[23,24] and hidden Markov models [3]. In [23], the authors en-
rich (generalize) the dissimilarity representation by using the near-
est feature rules. The generalization provided by the feature lines
and/or planes covers all the possible intra-class pairs and triplets
of prototypes to find the intrinsic geometric information available
at the pairwise dissimilarities. The enrichment of the dissimilarity
representation is beneficial for a specific structure of data, such
as correlated (cigar-like or elongated) datasets having, possibly,
a moderately nonlinear structure. In this strategy, however, objects
are represented by a vector of dissimilarities with prototype fea-
ture lines (or planes) that are computed between objects of the
same class. Consequently, the strategy has two drawbacks: the high
amount of generated feature lines that increase computational cost
[24] and the use of the labels of objects that leads to a supervised
learning system.

On the other hand, when designing a DBC with a measuring
system, we sometimes suffer from the difficulty of collecting suf-
ficient (labeled) training data for each class. Labeled instances, for
example, are often difficult, expensive, or time-consuming to ob-
tain, as they require the services of an experienced expert. Mean-
while, unlabeled data, defined as the samples that do not belong
to the classes being learned, may be relatively easy to collect, but
the use of this type of data is limited. To address this problem, in
a learning framework of semi-supervised learning (SSL) [1,4,6,29,32,
33], a large amount of unlabeled data, together with labeled data,
can be utilized to build better classifiers. Because SSL requires less
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human effort and results in higher accuracy, it is of great interest
both in theory and in practice [14,19,20].

In DBC, the SSL strategy can also be considered to improve the
classification performance. One of the easiest ways with which un-
labeled data contribute to learn DBC classifiers is to simply append
them to the representation set. Assume that the cardinalities of a
training set, T , and the prototype subset (representation set), P ,
are denoted by |T | and |P |, respectively. When employing an ad-
ditional unlabeled data U (where the sample size of the set U
is |U |), the cardinality and the dimensionality of the dissimilar-
ity row vectors that result are |T | and |P | + |U |, respectively. Here,
a prototype selection method can be utilized to reduce the dimen-
sionality of the dissimilarity space. Consequently, in the traditional
feature-based classification (FBC), employing SSL strategy leads to
increasing the cardinality of the training data, while, in DBC, uti-
lizing the above strategy results in increasing the dimensionality
of the training data. However, as in FBC, it is not also guaranteed
that increasing the dimensionality leads to a situation in which the
classification accuracy is improved.

In order to improve the classification performance of DBC in
an SSL fashion, in this paper we use the well-known one-shot sim-
ilarity (OSS) [30,31] measuring scheme based on the background
information of available extra (unlabeled) data. To achieve this im-
provement, we first compute the confidence levels of the training
data with the OSS distance. We then construct the dissimilarity
matrices, where the dissimilarity is measured with the averaged
OSS confidence levels. In OSS, when given two vectors, xi and x j ,
and an additionally available (unlabeled) data set, A, a measure of
the (dis)similarity between xi and x j is computed as follows. First,
a discriminative model is learned with xi as a single positive ex-
ample and A as a set of negative examples. This model is then
used to classify the other vector x j , and to obtain a confidence
score. Next, a second such score is obtained by repeating the same
process with the roles of xi and x j switched. Finally, the (dis)sim-
ilarity of the two vectors can be obtained by averaging the above
two scores.

The major task of this study is to deal with how the dissimilar-
ity distance can be effectively measured. However, when a limited
number of objects are available or the representational capability is
insufficient to cover the possible variations of data, it is difficult to
achieve the desired classification performance in the dissimilarity
representation. To overcome this limitation and thereby improve
the classification performance of DBC, in this paper we study a way
of exploiting additionally available unlabeled data when measuring
the dissimilarity distance with the OSS distance. As in SSL for FBC,
we use the easily collected unlabeled data as the background data
set, A, with which we can enrich the representational capability of
the dissimilarity measures. That is, our goal is to effectively mea-
sure the dissimilarity distance with the additional unlabeled data
as well as the labeled ones. In DBC, the SSL process is realized in
representation stage, while, in FBC, it is implemented in generaliza-
tion stage.

The main contribution of this paper is to demonstrate that
the classification accuracy of DBC can be improved by using the
OSS measuring technique based on unlabeled data. More specifi-
cally, experiments have been performed to demonstrate that the
OSS distance measure performs better than the Euclidean distance
measure. Here, the additional unlabeled set is used as well, but
now differently than for building the set of prototypes: it is used
in the distance measure and not in building the dissimilarity space.
The remainder of the paper is organized as follows. In Section 2,
after providing a brief introduction to DBC and OSS, we present
an explanation for the use of OSS in DBC and an SSL-type DBC al-
gorithm. Following this, in Section 3, we present an experimental
setup for the traditional DBC and proposed DBC algorithms. In Sec-
tion 4, we present the experimental results of artificial and real-life

datasets. Finally, in Section 5, we present our concluding remarks
as well as some feature works that deserve further study.

2. Related work

In this section, we briefly review the dissimilarity-based classi-
fication (DBC) approach and the one-shot similarity (OSS) measure,
which are closely related to the present empirical study. The de-
tails of these algorithms can be found in the related literature [25,
30,31].

2.1. Foundations of DBC [25]

A dissimilarity representation of a set of objects, T = {xi}n
i=1 ⊂

R
d (d-dimensional examples), is based on pair-wise comparisons,

and is expressed, for example, as an n × m dissimilarity ma-
trix, DT ,P [·, ·], where P = {p j}m

j=1 ⊂ R
d , a prototype subset, is

extracted from T . The subscripts of D represent the set of ele-
ments, on which the dissimilarities are evaluated. Thus, each row,
DT ,P [i, j], corresponds to the dissimilarity between the pairs of
objects, 〈xi, p j〉, where xi ∈ T and p j ∈ P . Consequently, when
given a distance measure between two objects, ρ(·,·), an object,
xi (1 � i � n), is represented as a new feature vector, δ(xi, P ), as
follows:

δ(xi, P ) = [
ρ(xi, p1),ρ(xi, p2), . . . , ρ(xi, pm)

]
. (1)

Here, the generated dissimilarity matrix, DT ,P [·,·], defines vec-
tors in a dissimilarity space, on which the d-dimensional ob-
ject, x, given in the original feature space, is represented as an
m-dimensional vector, δ(x, P ) or shortly δ(x). Thus, for a test
sample, z, we can achieve the classification by invoking a clas-
sifier built in the dissimilarity space and operating it on the
m-dimensional vector δ(z).

As mentioned previously, the dissimilarity approach is originally
developed for objects, not for feature vectors. However, the dissim-
ilarities are now used as features and can be replaced without any
problem by similarities. Thus, it should be noted that an approach
defined for arbitrary distances between full objects is used for dis-
tances measured in a feature space.1

On the basis of what we have just explained briefly, a conven-
tional algorithm for DBC is summarized as follows:

1. Select the prototype subset, P , from the training set, T , by us-
ing one of the prototype selection methods described in the
literature [26].

2. Using Eq. (1), compute the dissimilarity matrix, DT ,P [·,·], in
which the dissimilarity distance is computed on the basis of
the given measure ρ(·,·), such as the Euclidean distance (l2
norm).

3. For a testing sample, z, compute the corresponding row vec-
tor, δ(z), by using the same prototype subset and the distance
measure used in Step 2.

4. Achieve the classification by invoking a classifier built in the
dissimilarity space and operating it on the vector δ(z).

Here, we can see that the classification performance of DBC relies
heavily on how well the dissimilarity space, which is determined
by the dissimilarity matrix, is constructed. Thus, to improve the
performance, we need to ensure that the dissimilarity matrix is
well assembled.

1 We are grateful to the anonymous referee for providing us with the insight into
this.
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