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In this paper we propose to solve a range of computational imaging problems under a unified perspective
of a regularized weighted least-squares (RWLS) framework. These problems include data smoothing and
completion, edge-preserving filtering, gradient-vector flow estimation, and image registration. Although
originally very different, they are special cases of the RWLS model using different data weightings and
regularization penalties. Numerically, we propose a preconditioned conjugate gradient scheme which is
particularly efficient in solving RWLS problems. We provide a detailed analysis of the system conditioning
justifying our choice of the preconditioner that improves the convergence. This numerical solver, which is
simple, scalable and parallelizable, is found to outperform most of the existing schemes for these imaging
problems in terms of convergence rate.
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1. Introduction

In this paper we propose to solve some classical imaging prob-
lems with a unified quadratic optimization perspective. These top-
ics include data smoothing and completion, edge-preserving filter-
ing, gradient-vector flow estimation, and image registration. We
are particularly interested in high-performance numerical solvers
for these problems, as they are widely used as building blocks of
numerous applications in many domains such as computer vision
and medical imaging [1].

Concretely, we look at the framework of the regularized
weighted least-squares (RWLS):

arg min
u:RD→R

J (u) :=
∫
RD

w(x)
(
u(x) − u0(x)

)2
dx

+ γ 2α

∫
RD

∣∣Lαu(x)
∣∣2

dx (1)

Here, u0(x) ∈ R represents the observed measurement at point
x ∈ R

D , and u(x) the data to estimate. w(x) � 0 are non-negative
weights, which can be considered as confidence levels of the mea-
surements. Lαu : RD �→ R

n represents some regularization operator
Lα applying a penalty on u. We will restrict Lα to be a linear frac-
tional differential operator of order α > 0, such as the gradient and
the Laplacian. Further, γ > 0 is a trade-off parameter between the
weighted data-fidelity term and the regularity-penalty term.
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In this work we will focus on the discrete RWLS problem, or
the discrete counterpart of Eq. (1):

arg min
u∈RN

J (u) := ∥∥W
1
2 (u − u0)

∥∥2 + γ 2α‖Lαu‖2 (2)

Here, u0 ∈ R
N is the vector of the measurements of length N .

For multi-dimensional measurements, the data are assumed to be
vectorized in the lexicographical order. W ∈ R

N×N stands for a di-
agonal weighting matrix with the weights on its diagonal Wi,i =
wi � 0 for i = 0, . . . , N − 1. Lα in the discrete setting will be a ma-
trix representing the differential operator and we keep the same
notation. It will be clear (see Section 4) that each of our afore-
mentioned imaging problems fits Eq. (2) by choosing a particular
set of weights W and a particular regularization operator Lα .

Our main contribution here is proposing an efficient precondi-
tioned conjugate gradient (PCG) scheme which solves RWLS, and
hence the above imaging problems. We provide a detailed analysis
of the system conditioning justifying our choice of the precon-
ditioner that improves the convergence. Surprisingly, this simple
solver is found to outperform most of the state-of-the-art numer-
ical schemes proposed for those problems. In particular, the con-
vergence rate of PCG is spectacular, with a gain up to an order
of magnitude observed in some of our experiments. Additionally,
the PCG has the advantages of being easily implementable, scal-
able and parallelizable.

This paper is organized as follows. Section 2 describes in detail
the RWLS framework, and the proposed PCG solver. Section 3 an-
alyzes the choice of the preconditioner by showing its potential in
reducing the condition number of the problem and hence improv-
ing the convergence rate. Then, Section 4 presents the different
imaging problems revisited and solved by the RWLS approach. We
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show the superior performance of our method compared to var-
ious existing schemes. We also discuss an extension of the RWLS
model in Section 5. Our conclusions are drawn in Section 6. Finally,
mathematical details are deferred to the appendices.

2. Regularized weighted least-squares and a PCG solver

2.1. Notations in the 1D case

Let us use an example in the 1-dimensional (1D) RWLS to intro-
duce our notations and present our main results. The setting can
be easily extended to multi-dimensional cases (Section 2.5).

Consider the following RWLS in the continuous setting where
the regularization operator is the first derivative (i.e., Lα = d/dx
with α = 1):

arg min
u

J (u) =
∫
R

w(x)
(
u(x) − u0(x)

)2
dx + γ 2

∫
R

u′(x)2 dx (3)

This choice makes Eq. (3) a Dirichlet regularized regression prob-
lem. Its solution is the stationary point to the associated Euler–
Lagrange equation:

w(x)u(x) − γ 2u′′(x) = w(x)u0(x), x ∈ R (4)

In the discrete version, the operator L1 will be represented by
a first-order finite-difference matrix. For example, let L1 be the
following circulant matrix (Eq. (5)), which corresponds to a filter
g1 = [1,−1]/h1 with a periodic boundary condition.

L1 := 1

h1

⎡
⎢⎢⎢⎢⎢⎣

−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 −1 1
1 0 · · · 0 −1

⎤
⎥⎥⎥⎥⎥⎦ (5)

Here h1 > 0 represents the finite-difference spacing.
To solve Eq. (2), one sets the gradient of J (u) to zero, and

obtain a linear system which is no more than the discrete counter-
part of Eq. (4):

Au = b, where A := W + γ 2L∗
1L1 and b := Wu0 (6)

We used L∗
1 to denote the conjugate transpose of L1. It follows that

(−L∗
1L1) is a Hermitian matrix which represents a second-order

differential filter [2] g2 = [1,−2,1]/h2
1. In addition, A is Hermitian

and semi-positive definite.
L1 is diagonalizable by the fast Fourier transform (FFT) matrix F

and its k-th eigenvalue is λk = (e− jωk − 1)/h1 with ωk := 2πk/N:

L1 = F∗ΛF, Λ := diag[λ0, λ1, . . . , λN−1]
Due to the orthonormality of FFT, one has F∗F = I where I is the
identity matrix. Therefore A can be rewritten as:

A = W + γ 2F∗Λ̃F, Λ̃ := |Λ|2 := Λ∗Λ
where Λ̃ is the diagonal matrix of the eigenvalues λ̃k of L∗

1L1

which are given by λ̃k := |λk|2 = [ 2
h1

sin(ωk/2)]2.
The FFT choice above is clearly due to the assumed periodic

boundary condition. More generally, the Hermitian matrix L∗
1L1 al-

ways possesses an orthonormal eigen-decomposition:

L∗
1L1 = B∗|Λ|2B, |Λ|2 := diag

[|λ0|2, |λ1|2, . . . , |λN−1|2
]

where B is some orthonormal matrix, and (|λk|2)k=0,...,N−1 are the
eigenvalues of L∗

1L1 written in the modulus form to emphasize
their non-negative nature. In practice, the basis B will represent

trigonometric transforms, i.e. FFT, DCT (discrete cosine transform),
and DST (discrete sine transform), with a periodic, an even sym-
metric, and an odd-symmetric boundary conditions [2] respectively
imposed on the matrix L∗

1L1.
Consequently, for any order α > 0 one can define L∗

αLα to be a
fractional differential operator such that:

L∗
αLα := B∗|Λ|2αB,

|Λ|2α := diag
[|λ0|2α, |λ1|2α, . . . , |λN−1|2α

]
(7)

We will keep noting the spectrum of L∗
αLα by

Λ̃ := |Λ|2α, λ̃k := |λk|2α (8)

In the subsequent presentation, we will concentrate on the peri-
odic boundary condition (i.e., B = F).

Similar to Eq. (6), for an arbitrary α > 0, the minimizer of
Eq. (2) is the solution to the following linear system:

Au = b, where A := W + γ 2αL∗
αLα and b := Wu0 (9)

where A is Hermitian and semi-positive definite, and can be writ-
ten as:

A = W + γ 2αF∗Λ̃F (10)

The k-th eigenvalue of L∗
αLα is given by λ̃k = |λk|2α = [ 2

h1
×

sin(ωk/2)]2α . These definitions will be extended to multi-dimen-
sional case in Section 2.5.

2.2. Case of constant weights: a linear filtering

We keep considering the 1D RWLS problem. If the weights are
everywhere constant (say W = w̄I for some constant w̄), A has an
explicit inverse. The solution is given by a linear filtering:

u = A−1b = F∗ w̄
(

w̄I + γ 2αΛ̃
)−1

Fu0 (11)

In plain words, Eq. (11) signifies:

(i) take the Fourier transform of u0;
(ii) weight the spectrum by Sk := w̄/(w̄ + γ 2αλ̃k) in a pointwise

manner;
(iii) take the inverse Fourier transform.

The weights Sk correspond to the spectrum of a low-pass filter:
Sk attains its maximum at the zero frequency (k = 0) and starts to
drop down as k increases. It attains the half of the maximum at
the frequency k such that λ̃k = w̄/γ 2α . Examples of the spectrum
for different α are shown in Fig. 1.

2.3. Case of non-constant weights: interpretation of a controlled
diffusion

Regarding the case of non-constant weights, A no longer has
an explicit inverse in general. However some asymptotic analysis
sheds light on the expected behavior of the solution.

Suppose that the weights are nowhere zero, α = 1 and a suffi-
ciently small γ such that one can consider the first-order approxi-
mation of the solution:

u = A−1b = (
W + γ 2L∗

1L1
)−1

Wu0

= (
I + γ 2W−1L∗

1L1
)−1

u0

≈ (
I − γ 2W−1L∗

1L1
)
u0 = u0 − γ 2W−1L∗

1L1u0 (12)

It can be seen that Eq. (12) represents a step of diffusion on u0
where the step length is controlled by γ 2W−1. Clearly, a data point
associated with a large weight has a small step length and will
undergo little change, while a point with a small weight (or large
step) will tend to be blurred out by the diffusion process.
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