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The change detection and segmentation methods have gained considerable attention in scientific research
and appear to be the central issue in various application areas. The objective of the paper is to present
a segmentation method, based on maximum a posteriori probability (MAP) estimator, with application
in seismic signal processing; some interpretations and connections with other approaches in change
detection and segmentation, as well as computational aspects in this field are also discussed. The
experimental results obtained by Monte Carlo simulations for signal segmentation using different signal
models, including models with changes in the mean, in FIR, AR and ARX model parameters, as well as
comparisons with other methods, are presented and the effectiveness of the proposed approach is proved.
Finally, we discuss an application of segmentation in the analysis of the earthquake records during the
Kocaeli seism, Turkey, August 1999, Arcelik station (ARC). The optimal segmentation results are compared
with time–frequency analysis, for the reduced interference distribution (RID). The analysis results confirm
the efficiency of the segmentation approach used, the change instants resulted by MAP appearing clear
in energy and frequency contents of time–frequency distribution.

© 2013 Published by Elsevier Inc.

1. Introduction

The problem of change detection and diagnosis has gained con-
siderable attention during the last three decades in the research
context and appears to be the central issue in various application
areas. From a statistical point of view, change detection tries to
identify changes in the probability distribution of a stochastic pro-
cess. In general, the problem involves both detecting whether or
not a change has occurred, or whether several changes might have
occurred, and identifying the times of any such changes.

In the off-line applications, it is available a batch of data, and
the goal is to find the time instants for system changes as ac-
curately as possible. This is usually called segmentation. Deeper
interactions between the control, signal processing, and statistical
communities have recently contributed to the creation of new in-
sights into the change detection problem in a significant way.

The analysis of the behavior of real data reveals that most
of the changes that occur are either changes in the mean level,
variance, or changes in spectral characteristics. In this framework,
the problem of segmentation between “homogeneous” parts of the
data (or detection of changes in the data) arises more or less ex-
plicitly.
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In our opinion, a coherent methodology is now available to the
designer, together with the corresponding set of tools, which en-
ables him to solve a large variety of change detection problems
in dynamical systems. It is interesting to note that the theory has
been used in many successful applications [1,2]. Also, many books,
journals and conference publications are concerned with these ap-
plications. Among them can be mentioned applications in mechan-
ical engineering [2–4], industrial process monitoring [5–7], civil
infrastructure [8–10], medical diagnosis and treatment [11–13],
speech segmentation [14,15], underwater sensing [16,17], video
surveillance [18,19], and driver assistance systems [20–22].

The detection of events in seismic signals has been a subject of
great interest during the last thirty years. Most of the methods in
this area have been based on detecting special patterns or clusters
in seismic data [23–28]. Other approaches make use of AR and
ARMA models, used in conjunction with the Akaike information
criterion (AIC) method for change detection and isolation, as well
as to detect the primary (P-waves) and secondary (S-waves) waves
[8,29–34]. These techniques currently employed for event detection
in seismic waves use single- or three-component recordings.

Another class of methods makes use of time–frequency anal-
ysis. Many earthquake engineering processes are characterized by
non-stationary and nonlinear features that are often obscured in
the traditional Fourier-based analysis schemes. As these represen-
tations provide an averaged-sense of frequency content, they do
not distinguish noteworthily certain frequency components that
are of short duration and high frequency as well as those arising
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from persistent, low-amplitude features. The ability to differentiate
these contributions is critical in earthquake engineering. The time–
frequency methods are capable of resolving energy content in such
signals with both frequency and time. As a consequence, it was re-
quired to develop and use some non-stationary spectral analysis
techniques. In this sense, significant efforts have been made in or-
der to represent the temporal evolution of non-stationary spectral
characteristics, assured by time–frequency analysis [35–37] among
others. A new method based on a time–frequency analysis through
the Wigner Distribution (WD) is presented and applied in [38]
and [39]. The method consists on defining an appropriate entropic
measure through a suitable time–frequency distribution, acting as
probability distribution function. The information entailed by WD
is explored by means of Rényi entropy. The method is based on
identification of the events as those temporal clusters having the
highest amount of information (entropy). In [40], the seismic signal
analysis is performed by Smoothed Pseudo Wigner–Ville Distri-
bution (SPWVD) in order to obtain instantaneous frequency (IF)
information. Based on the time–frequency behavior, a pattern to
characterize the seismic signal is estimated. In the same time it
is analyzed the energy signal envelope, which is the derivative of
the filtered cumulative energy, serving to estimate the different
transitions along the seismic signal. Other applications of time–
frequency analysis in earthquake engineering are presented in [41,
42] and [43], among others.

The outline of this paper is as follows. In Section 2, it is pre-
sented the segmentation problem formulation from a statistical
perspective. In Section 3 the conceptual description of the sta-
tistical criteria for segmentation: the Maximum Likelihood (ML)
and Maximum A posteriori Probability (MAP) estimate, some in-
terpretations and connections, as well as computational aspects in
this field are discussed. In Section 4, some experimental results
obtained by Monte Carlo simulations for signal segmentation us-
ing different signal models, referred in literature, are presented
and the effectiveness of the proposed approach is proved. Sec-
tion 5 presents some comparisons of MAP approach with other
change detection and segmentation methods, in the same simula-
tion framework. Finally, Section 6 presents the experimental results
obtained in segmentation of the two-component recordings (NS
and WE) of the Kocaeli, Turkey, August 1999, earthquake, Arcelik
station (ARC). The efficiency of the segmentation approach, in this
case, is proved by time–frequency analysis, when segmentation
results are evaluated using the reduced interference distribution
(RID).

2. Problem formulation

We consider the following linear regression model with piece-
wise constant parameters,

yt = φT
t θt + et, E

(
e2

t

) = Rt, (1)

as a good description of the observed signal yt . Here θt is a
d-dimensional parameter vector, φt is the regressor, and the mea-
surement vector is assumed to have dimension p. The noise et is
assumed to be Gaussian with a known time-varying noise variance
Rt , for generality.

The task of determining θt from yt is referred as estima-
tion, and change detection is the task of finding abrupt, or rapid,
changes in θt , which is assumed to start at time k, referred as the
change time. The basic assumptions on model (1) in change detec-
tion are the following:

• The component θt undergoes an abrupt change at time t = k.
Once this change has been detected, the procedure will start
all over again to detect the next change. The alternative is to
consider θt as piecewise constant and focus on a sequence of

change times k1,k2, . . . ,kn . This sequence is denoted kn , where
both ki and n are free parameters. The segmentation problem
is to find both the number and locations of change times in kn .

• In statistical approaches, the noise will be assumed to be
white and Gaussian et ∈ N(0, Rt).

We introduce now the general segmentation problem for lin-
ear regression model with piecewise constant parameters. As we
mentioned above, in segmentation the goal is to find a sequence
of time indices kn = k1,k2, . . . ,kn , where both the number n and
the locations ki are unknown, such that a linear regression model
with piecewise constant parameters,

yt = φT
t θ(i) + et, E

(
e2

t

) = λ(i)Rt (2)

when ki−1 < t � ki is a good description of the observed signal yt .
Here θ(i) is the d-dimensional parameter vector in segment i, φt is
the regressor and ki denotes the change times. The noise et is
assumed to be Gaussian with variance λ(i)Rt , where λ(i) is a pos-
sibly segment dependent scaling of the noise and Rt is the nominal
covariance matrix of the noise; the model (2) represents an exten-
sion of model (1). We can think of λ either as a scaling of the noise
variance or variance itself (Rt = 1). Neither θ(i) or λ(i) are known.
The Gaussian assumption on the noise is a standard one, partly
because it gives analytical expressions and partly because it has
proven to work well in practice. We will assume Rt to be known
and the scaling as a possibly unknown parameter. The model (2)
is referred to as changing regression, because it changes between
regression models. Its important feature is that the jumps divide
the measurements into a number of independent segments, since
the parameter vectors in different segments are independent. Some
important cases of the model (2) are the changing mean model,
the autoregressive (AR) model, the autoregressive model with ex-
ogenous variable (ARX) and finite impulse response (FIR) model,
etc., where φt has different expressions.

The assumption on the regression models in (2) is not too re-
strictive since many stationary processes encountered in practice
can be closely approximated by such models. The identification
and parameters estimation methods represent only tools to per-
form change detection and segmentation. Good and precise models
offers high performance in these schemes, but also biased para-
metric models can be used for change detection and segmentation.
This bias decreases, but does not annihilate the performance of the
detection and segmentation procedures.

One way to guarantee that the best possible solution is found,
is to consider all possible segmentation kn , estimate one linear re-
gression model in each segment, and then choose the particular kn

that minimizes an optimality criteria:

k̂n = arg min
n�1,0<k1<···<kn=N

V
(
kn). (3)

For the measurements in the ith segment, that is yki−1+1, . . . ,

yki = yki
ki−1+1, the least square estimate and its covariance matrix

are denoted:

θ̂ (i) = P (i)
ki∑

t=ki−1+1

φt R−1
t yt, (4)

P (i) =
( ki∑

t=ki−1+1

φt R−1
t φT

t

)−1

. (5)

The following quantities, V – the sum of squared residuals, D –
−log det of the covariance matrix P and N – the number of data
in each segment, are given by
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