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In this paper, we suggest averaging lateration estimates obtained using overlapped subgroups of distance
measurements as opposed to obtaining a single lateration estimate from all of the measurements directly
if a redundant number of measurements are available. Least squares based closed form equations are
used in the lateration. In the case of Gaussian measurement noise the performances are similar in
general and for some subgroup sizes marginal gains are attained. Averaging laterations method becomes
especially beneficial if the lateration estimates are classified as useful or not in the presence of outlier
measurements whose distributions are modeled by a mixture of Gaussians (MOG) pdf. A new modified
trimmed mean robust averager helps to regain the performance loss caused by the outliers. If the
measurement noise is Gaussian, large subgroup sizes are preferable. On the contrary, in robust averaging
small subgroup sizes are more effective for eliminating measurements highly contaminated with MOG
noise. The effect of high-variance noise was almost totally eliminated when robust averaging of estimates
is applied to QR decomposition based location estimator. The performance of this estimator is just 1 cm
worse in root mean square error compared to the Cramér–Rao lower bound (CRLB) on the variance both
for Gaussian and MOG noise cases. Theoretical CRLBs in the case of MOG noise are derived both for time
of arrival and time difference of arrival measurement data.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Localization is an important problem encountered in a diverse
area of applications such as finding the employees or utilities in
a working area, location aware services supplied to mobile phone
users, bioinstrumentation and communicating toys [1,2]. A popu-
lar method of localization is lateration where measured distances
from sensors to the point to be localized are used [3]. Some of the
lateration based methods require solving a set of nonlinear equa-
tions what is usually performed by some iterative procedures as
in the case of nonlinear least squares type algorithms in [4–6].
On the other hand, there are some other lateration based meth-
ods which reduce the original nonlinear problem into a linear one
making a closed form solution easily obtainable such as the least
squares-time difference of arrival (LS-TDOA) [7], least squares-time
of arrival (LS-TOA) [8,9] and the so-called ordinary least squares-
time of arrival (OLS-TOA) [5] location estimators. Another closed
form location estimator is based on Cayley–Menger determinants
and uses the geometric properties of tetrahedrons whose corners
are defined by the unknown location and three known locations
[10]. Some of the closed form location estimators reduce the non-
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linear problem partially to a linear system of equations whose
solution is obtained in terms of another unknown which is found
solving a quadratic equation. One of the resulting two solutions of
this quadratic equation is easily eliminated and substituting the so-
lution into the linear system of equations the location is estimated.
The time of arrival (TOA) based location estimator in [11], its QR
decomposition based version in [4] and another one able to uti-
lize more than necessary distance measurements [12,13] which is
in contrast with the former two estimators, belong to this class
of estimators. Although these methods have some performance
inferiority with respect to the iterative nonlinear methods, their
computational simplicity make them preferable in some applica-
tions where limited computational power is available.

One type of location estimation scenarios may supply more
than necessary distance measurements. In that case either all of
the measurements can be used at once to obtain a single loca-
tion estimate or subgroups of measurements can be selected to
obtain many estimates. In the latter, the final location estimate is
found as the average of the estimates. We will call this approach
as averaging laterations while the former one will be called as sin-
gle lateration. The Divide-And-Conquer (DAC) approach of [14] uses
averaging laterations with subgroups of distance measurements
which might overlap or not. Non-overlapping subgroups necessi-
tate a large number of measurements which property is not shared
by the choice of overlapping subgroups [8,15]. In [8], TOA-based
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averaging laterations method with overlapping subgroups of size
three was given as an alternative to LS algorithm in finding an
unknown location in two dimensions. Recently, in [15], the QR de-
composition based TOA method of [4] was applied in regular or
robust versions of averaging with overlapping subgroups of mea-
surements. In fact, for fairness in overlapping subgroups, every
possible combination of total measurements with the chosen group
size is considered in [15] which is also the adopted method in this
work. On the other hand, every lateration-based location estimator
utilizing LS algorithm can operate in single lateration mode with
any redundant number of measurements. However, for estimators
which cannot handle excessive number of measurements which is
more than their nominal number such as the estimators of [11,4],
the adopted averaging laterations mode of operation seems to be
the best candidate in utilizing all of the available measurements
while assuring fairness among them.

In order to compare averaging and single lateration modes of
operation, a location estimator which can utilize both nominal
or more than nominal number of measurements is required. We
name this property as the scalability of the estimator. A good
example for non-scalable location estimators is the QR decompo-
sition based lateration technique in [4] which always uses three
distance measurements. Many of the location estimators having
closed form solutions are scalable such as LS solutions of TOA
and TDOA type problem formulations. In general, iterative loca-
tion estimators mainly solving nonlinear equations are scalable too.
However, closed form solution producing methods which trans-
form the nonlinear equation systems partially to a linear system of
equations, are not scalable with the exception of the methods in
[12,13]. Even though iterative methods are scalable, they are not
considered for averaging laterations since they are both computa-
tionally demanding already and their optimality will be disturbed
unless whole data is considered. So, in the first part of our study
we chose two TOA based and one time difference of arrival (TDOA)
based least squares (LS) estimators for investigating averaging es-
timates.

Simulation experiments in our study show that generally av-
eraging the estimates obtained with partial sensor data achieves
similar performance compared to the case of using whole data in
obtaining a single estimate when the measurements contain Gaus-
sian disturbances. However, when some of the measurements are
very noisy, the performance of a single lateration based estima-
tor deteriorates significantly. Such measurements which are sub-
stantially different from the other measurements are many times
called as outliers. The disturbing effect of outlier measurements
can be eliminated by a robust location estimator [16,17]. Robust
location estimators can be classified into two groups: outlier de-
tection based or robust estimation based [17]. Outlier detection
based methods eliminate detected outliers completely whereas ro-
bust estimation methods lessen their weights in the estimation.
For a detailed comparison of these methods, one can refer to [17].
As a robust estimation example, recently in [18], the least me-
dian of squared errors obtained in a TDOA based LS solution is
minimized over the set of every possible subgroup combination
of measurements. An outlier elimination procedure is applied in
[19] in order to eliminate outlier estimates obtained with mini-
mal subgroups of measurements and with an iterative nonlinear
LS solution based on first order Taylor series expansion of non-
linear localization equation. Then the final estimate is obtained as
the median of the qualified estimates. Still some other robust es-
timation solutions exist such as the genetic algorithm based TDOA
solution in [19] and the location estimate in [20] obtained by uti-
lizing the expectation maximization algorithm for removing outlier
distance measurements iteratively.

The main idea of this paper is to promote averaging laterations
as opposed to single lateration. Additionally, it is demonstrated that

the averager can be easily transformed into a robust version which
can handle outlier measurements. The averaging laterations ap-
proach in this paper can be considered as an extension of the
work in [8] of subgroups with three measurements for TOA based
lateration in two dimensions to any possible subgroup size of mea-
surements for lateration in three dimensions. For the localization
scenario with outlier measurements, the proposed robust method
can be classified as an outlier detection based location estima-
tor like one of the methods in [19] and the new robust averager
used for detecting outliers resembles to the modified trimmed
mean (MTM) averager defined in [21] which will be described
in Section 4. However in this work varying subgroup sizes for
measurements are investigated which was not considered before.
The outlier statistics was a general mixture model in [19]. Here
the statistics of measurement noise with outliers is modeled by a
mixture of Gaussians (MOG) distribution. Other than the formerly
described TOA and TDOA based LS location estimators, the non-
scalable QR decomposition based lateration technique in [4] is also
used in the investigation with MOG sensor noise. Furthermore, the
performances of TOA and TDOA based location estimators were
also compared to the theoretical performance bounds. Theoretical
Cramér–Rao lower bounds (CRLB) for TOA and TDOA based loca-
tion estimation with MOG sensor noise are derived.

The remaining part of the paper is organized as follows. In Sec-
tion 2, the linearized TOA and TDOA based LS location estimators
and the QR decomposition and TOA based location estimator [4]
are described. In Section 3, the averaging laterations method of
location estimation is described and its performance is investi-
gated by simulation studies. Section 4 considers location estima-
tion when the distance measurements have MOG noise contamina-
tion. In this section, first a robust version of averaging laterations
is proposed then the performance of this method is compared to
simple averaging laterations and single lateration. Section 5 in-
cludes a discussion on the proposed averaging technique, draws
conclusions from the work and suggests directions of further study.
Lastly, in Appendices A–C the derivations of CRLB both for the
cases of Gaussian and MOG sensor noise and both for TOA and
TDOA measurement data, are given.

2. The localization problem and some linearized estimators

We define a localization setup which will emphasize the main
motivation in the paper. So, let us assume that we have N sensors
located uniformly on a circle placed at the ceiling and the location
to be determined is placed on the floor. Note that this hypothet-
ical placement of the objects does not disturb the applicability of
the method in a problem of determining the position of an air-
craft using the distance measurements from several base stations
like in [11] or determining the location of employees in an office
environment like in [22].

The true distance from the ith sensor to the unknown location,
p = (px, p y, pz)

T , can be given as

dti = ‖p − ai‖ =
√

(px − xi)
2 + (p y − yi)

2 + (pz − zi)
2 (1)

where ai = (xi, yi, zi)
T is the location of the ith sensor and (·)T

denotes the transposition operation. The measurement is modeled
as

di = dti + σiεi (2)

where εi is a zero mean Gaussian random variable with unity vari-
ance and σi is a constant. From a geometrical point of view three
and four measurements are required for 2-dimensional (2-D) and
3-D localization, respectively. The distance measurements are gen-
erally obtained indirectly, computing the distance traveled by an
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