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In most compressive sensing problems, �1 norm is used during the signal reconstruction process. In
this article, a modified version of the entropy functional is proposed to approximate the �1 norm. The
proposed modified version of the entropy functional is continuous, differentiable and convex. Therefore,
it is possible to construct globally convergent iterative algorithms using Bregman’s row-action method for
compressive sensing applications. Simulation examples with both 1D signals and images are presented.
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1. Introduction

The Nyquist–Shannon sampling theorem [1] is one of the fun-
damental theorems in signal processing literature. It specifies the
conditions for perfect reconstruction of a continuous signal from
its samples. If a signal is sampled with a sampling frequency that
is at least two times larger than its bandwidth, it can be perfectly
reconstructed from its samples. However in many applications of
signal processing including waveform compression, perfect recon-
struction is not necessary. In this article, a modified version of the
entropy functional is proposed. The functional is defined for both
positive and negative real numbers and it is continuous, differen-
tiable and convex everywhere. Therefore it can be used as a cost
function in many signal processing problems including the com-
pressive sensing problem.

The most common method used in compression applications is
transform coding. The signal x[n] is transformed into another do-
main defined by the transformation matrix ψ . The transformation
procedure is simply finding the inner product of the signal x[n]
with the rows ψi of the transformation matrix ψ represented as
follows:

sl = 〈x,ψl〉, l = 1,2, . . . , N, (1)

where x is a column vector, whose entries are samples of the sig-
nal x[n].

The digital signal x[n] can be reconstructed from its transform
coefficients sl as follows:

x =
N∑

l=1

sl.ψl or x = ψ.s, (2)

where s is a vector containing the transform domain coefficients sl .

* Corresponding author.

The basic idea in digital waveform coding is that the signal
should be approximately reconstructed from only a few of its non-
zero transform coefficients. In most cases, including the JPEG im-
age coding standard, the transform matrix ψ is chosen in such a
way that the new signal s is efficiently represented in the trans-
form domain with a small number of coefficients. A signal x is
compressible, if it has only a few large amplitude sl coefficients
in the transform domain and the rest of the coefficients are either
zeros or negligibly small-valued.

In a compressive sensing framework, the signal is assumed to
be K -sparse in a transformation domain, such as the wavelet do-
main or the DCT (Discrete Cosine Transform) domain. A signal with
length N is K -sparse if it has at most K non-zero and (N − K ) zero
coefficients in a transform domain. The case of interest in CS prob-
lems is when K � N , i.e., sparse in the transform domain.

The CS theory introduced in [2–6] provides answers to the
question of reconstructing a signal from its compressed measure-
ments y, which is defined as follows

y = φx = φ.ψ.s = θ.s, (3)

where φ is the M × N measurement matrix and M � N . The re-
construction of the original signal x from its compressed measure-
ments y cannot be achieved by simple matrix inversion or inverse
transformation techniques. A sparse solution can be obtained by
solving the following optimization problem:

sp = arg min||s||0 such that θ.s = y. (4)

However, this problem is an NP-complete optimization problem;
therefore, its solution cannot be found easily. It is also shown
in [2–4] that it is possible to construct the φ matrix from ran-
dom numbers, which are i.i.d. Gaussian random variables. In
this case, the number of measurements should be chosen as
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Fig. 1. Entropy functional g(v) (+), |v| (◦) that is used in �1 norm and the Euclidean
cost function v2 (−) that is used in �2 norm.

cK log( N
K ) < M � N to satisfy the conditions for perfect recon-

struction [2], and [3]. With this choice of the measurement matrix,
the optimization problem (4) can be approximated by �1 norm
minimization as:

sp = arg min||s||1 such that θ.s = y. (5)

Instead of solving the original CS problem in (4) or (5), several
researchers reformulate them to approximate the solution. For ex-
ample, in [15], the authors developed a Bayesian framework and
solved the CS problem using Relevance Vector Machines (RVM).
In [7,8] the authors replaced the objective function of the CS op-
timization in (4), (5) with a new objective function to solve the
sparse signal reconstruction problem. One popular approach is re-
placing �0 norm with �p norm, where p ∈ (0,1) [7,9] or even
with the mix of two different norms as in [10]. However, in these
cases, the resulting optimization problems are not convex. Several
studies in the literature addressed �p norm based non-convex op-
timization problems and applied their results to the sparse signal
reconstruction example [11–14].

The entropy functional g(v) = v log v is also used to approx-
imate the solution of �1 optimization and linear programming
problems in signal and image reconstruction by Bregman [16], and
others [17–23]. In this article, we propose the use of a modified
version of the entropy functional as an alternative way to approxi-
mate the CS problem. In Fig. 1, plots of the different cost functions
including the proposed modified entropy function

g(v) =
(

|v| + 1

e

)
log

(
|v| + 1

e

)
+ 1

e
, (6)

as well as the absolute value g(v) = |v| and g(v) = v2 are shown.
The modified entropy functional (6) is convex, continuous and dif-
ferentiable, it slowly increases compared to g(v) = v2, because
log(v) is much smaller than v for high v values as seen in Fig. 1.
The convexity proof for the modified entropy functional is given in
Appendix A.

Bregman also developed iterative row-action methods to solve
the global optimization problem by successive local Bregman-
projections. In each iteration step, a Bregman-projection, which is a
generalized version of the orthogonal projection, is performed onto
a hyperplane representing a row of the constraint matrix θ . In [16],
Bregman proved that the proposed iterative method is guaranteed
to converge to the global minimum, given that there is a proper
choice of the initial estimate (e.g., v0 = 0).

An interesting interpretation of the row-action approach is that
it provides an on-line solution to the CS problem. Each new mea-
surement of the signal adds a row to the matrix θ . In the iterative

row-action method, a Bregman-projection is performed onto the
new hyperplane formed by the new measurement. In this way, the
currently available solution is updated without solving the entire
CS problem. The new solution can be further updated by using
past or new measurements in an iterative manner by performing
other Bregman-projections. Therefore, it is possible to develop a
real-time on-line CS method using the proposed approach.

In Section 2 of this paper, we review the Bregman-projection
concept and define the modified entropy functional and related
Bregman-projections. We generalize the entropy function based
convex optimization method introduced by Bregman because the
ordinary entropy function is defined only for positive real num-
bers. On the other hand, transform domain coefficients can be both
positive and negative.

Section 2 also contains the Bregman-projection definition, and
formulation of the entropy functional based CS reconstruction
problem. We define the iterative CS algorithm in Section 2.1, and
provide experimental results in Section 4.

2. Bregman-projection based algorithm

The �o and �1 norm based cost functions (4) and (5) used in
compressive sensing problems are not differentiable everywhere.
Therefore, it is not possible to use convex optimization algorithms
to solve the CS problems in (4) and (5). Besides, as the size of the
problem increases, solving these optimization problems becomes
very compelling. As the original CS problem given in (4) and (5)
involves non-convex �0 and �1 cost functions, it cannot be divided
into simpler subproblems for convex optimization.

In this article, we replace �0 or �1 norms in the original CS
problem with a new cost function called modified entropy func-
tion. In this way, it becomes possible to utilize Bregman’s itera-
tive convex optimization methods. Bregman’s algorithms have been
widely used in many signal processing applications such as signal
reconstruction and inverse problems [17,18,22–31]. Here, we in-
troduce an entropy based cost function that leads to an iterative
solution of the CS problem by dividing it into simpler convex sub-
problems.

Assume that the original signal x can be represented by a
K -sparse length-N vector s in a transform domain characterized by
the transform matrix ψ . In CS problems, the original signal x is not
available. However M measurements y = [y1, . . . , yM ]T = φx of the
original signal are observable via the measurement matrix φ, and
the relations between y and s are described as in Eq. (3). CS the-
ory suggests that we can find x using �1 minimization if certain
conditions hold, such as the Restricted Isometry Property [3].

Bregman’s method provides globally convergent iterative algo-
rithms to solve optimization problems with convex, continuous
and differentiable cost functionals g(.):

min
s∈C

g(s), (7)

such that

θi .s = yi for i = 1,2, . . . , M, (8)

where θi is the ith row of the matrix θ . In [16], Bregman showed
that optimization problems with continuous and differentiable cost
functionals can be divided into subproblems, which can be solved
in an iterative manner, to approximate the solution of the original
problem. Each equation in (8) represents a hyperplane Hi ∈ R N ,
which are closed and convex sets in R N . In Bregman’s method, the
iterative reconstruction algorithm starts with an arbitrary initial
estimate and successive Bregman-projections are performed onto
the hyperplanes Hi , i = 1,2, . . . , M , in each step of the iterative
algorithm.
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