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This paper proposes to reduce the quantization noise using a periodic code, derives a condition for
achieving an improvement on the signal to noise ratio (SNR) performance, and proposes an optimal
design for the periodic code. To reduce the quantization noise, oversampled input signals are first
multiplied by the periodic code and then quantized via a quantizer. The signals are reconstructed
via multiplying the quantized signals by the same periodic code and then passing through an ideal
lowpass filter. To derive the condition for achieving an improvement on the SNR performance, first
the quantization operator is modeled by a deterministic polynomial function. The coefficients in the
polynomial function are defined in such a way that the total energy difference between the quantization
function and the polynomial function is minimized subject to a specification on the upper bound of
the absolute difference. This problem is actually a semi-infinite programming problem and our recently
proposed dual parameterization method is employed for finding the globally optimal solution. Second,
the condition for improving the SNR performance is derived via a frequency domain formulation. To
optimally design the periodic code such that the SNR performance is maximized, a modified gradient
descent method that can avoid the obtained solution to be trapped in a locally optimal point and
guarantee its convergence is proposed. Computer numerical simulation results show that the proposed
system could achieve a significant improvement compared to existing systems such as the conventional
system without multiplying to the periodic code, the system with an additive dithering and a first order
sigma delta modulator.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Quantization is widely employed in many signal processing sys-
tems, such as in data compression [1] and analog to digital conver-
sion [2] systems. However, as the quantization is not a reversible
process because it is a many to one mapping, signals cannot be
perfectly reconstructed after the quantization [3]. As a result, effi-
cient methods for the reduction of the quantization noise are very
useful for many signal processing applications.

The most common method to minimize the quantization noise
is to perform the quantization based on the statistics of input
signals [4]. Finer resolutions are assigned to the ranges of input
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signals which occur most frequently, and vice versa. However, this
kind of quantization schemes requires a prior knowledge of the
statistics of input signals. In many situations, the statistics of input
signals are unknown and this method cannot be applied directly.

Dithering is also a common method for reducing the quantiza-
tion noises. However, it worth noting that there are two main fun-
damental differences between the system with an additive dither-
ing and the proposed system. First, in the system with an additive
dithering, a white noise is added and subtracted before and after
the quantizer, respectively. On the other hand, a periodic code is
multiplied before and after the quantizer in the proposed system.
Just changing addition to multiplication will require a very differ-
ent analytical technique and come up to a very different result.
Statistical analysis of an additive noise can be performed easily
and plenty of the existing results can be applied. However, the ex-
isting techniques for analyzing multiplicative noise are limited and
this problem is theoretically challenging. Second, the introduced
noise in the additive dithering approach is a random process, while
the periodic code in the proposed system is a deterministic signal.
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Since these two signals are very different in nature, the analy-
sis of these two systems is also very different. In terms of the
computational effort and the cost of an implementation, since the
implementation of the system with an additive dithering requires
a random sequence, it is in general more difficult and costly. This
is because it is very difficult and costly to generate a truly ran-
dom signal with a uniform distribution. On the other hand, since a
simple potential divider can be employed for performing the mul-
tiplication of signals, the implementation of the proposed system
is easier and cheaper compared to the existing ones because the
periodic code can be stored in memory and only multiplications
are required.

Another approach similar to the dithering is via multiplying the
signals before and after the quantization by a pseudorandom bi-
nary sequence. However, this method is also different from our
proposed method. First, the pseudorandom signal is not optimally
designed. On the other hand, the proposed periodic code is op-
timally designed. Second, the pseudorandom signal is only repre-
sented by one bit, while our proposed periodic code is represented
by more than one bit. Hence, performances of our proposed sys-
tem are better than those with multiplying the signals before and
after the quantization by a pseudorandom binary sequence.

Sigma delta modulation is also widely used to minimize the
quantization noise [2,3,5–7,10,11]. If input signals are oversampled,
then the signals are bandlimited within a very narrow band [8].
By a proper design of the loop filter, the quantization noise can be
further shaped away from the signal band. Although this method
can sometimes achieve very high SNRs, many high order sigma
delta modulators suffer from the instability problem particularly
when the input magnitudes are close to the saturation level of the
quantizer [12–14].

In order to reduce the quantization noise with the guarantee of
the stability without the prior knowledge on the statistics of input
signals, this paper proposes to multiply signals before and after
the quantization by a periodic code. Here, the periodic code means
a periodic sequence. Periodic codes are widely employed in spread
spectrum communication systems. The motivation of the use of the
periodic code is based on the fact that the conventional system
without multiplying by the periodic code is actually a particular
case of the proposed system when the periodic code is equal to
one and the period of the code is also equal to one. Hence, the
proposed system is the generalization of the conventional system
and should achieve an improvement on the signal to noise (SNR)
ratio performance if the periodic code is designed properly. The
working principles of the proposed method are based on the fol-
lowing arguments. A periodic code can be represented using the
Fourier series. Multiplying the input signals by the periodic code
is equivalent to the weighted sums of the input signals modulated
at different harmonic frequencies. If the quantization operator can
be modeled by a polynomial function, then the quantizer performs
the weighted sums of the multiplications of the coded signals in
the time domain. In the frequency domain, the quantizer performs
the weighted sums of the convolutions of the coded signals. It is
worth noting that the convolutions of the modulated components
will result to the signal components with wider bandwidths and
shifting their center frequencies to other harmonic frequencies. Af-
ter multiplying the quantized signals by the same periodic code
and passing through a lowpass filter, all signal components cen-
tered at the higher harmonic frequencies will be discarded and
only the base band signal component is retained. Although alias-
ing still occurs in the base band, the effect of the aliasing due to
these higher order terms in the polynomial can be minimized by a
proper design of the periodic code.

In this paper, the input signal is assumed to be oversampled
and it is in the discrete time form. Instead of investigating the
analog to digital and digital to analog conversions, this paper is

Fig. 1. (a) Conventional system. (b) Proposed system with a periodic code.

to reduce the quantization noise in such a way that the stability
of the system is guaranteed without the prior knowledge on the
statistics of input signals. To achieve this goal, this paper proposes
to multiply the signals before and after the quantization by a pe-
riodic code. The outline of this paper is as follow. In Section 2, an
approximated model for the quantizer is introduced. Based on the
approximated model, detail noise analysis including the derivation
of a condition for achieving an improvement on the SNR perfor-
mance is presented in Section 3. In Section 4, a modified gradient
descent method is proposed for designing a periodic code such
that the SNR performance is maximized. The proposed method
can avoid the obtained solution to be trapped in a locally optimal
point and guarantee the convergence of the proposed algorithm.
In Section 5, numerical computer simulation results are presented.
Finally, a conclusion is drawn in Section 6.

2. Approximated quantization model

It is assumed in many quantization systems that the quantiza-
tion noise is modeled by an additive wide sense stationary white
noise source. The input of the quantizer is also assumed to be a
stationary random process. Each sample of the quantization error
is assumed to be uniformly distributed over the range of the quan-
tization step size and uncorrelated to the input of the quantizer.
Recently, the histogram of the quantizer output is derived analyt-
ically based on nonlinear system theories [10]. This result verifies
that the assumptions made in the conventional system are invalid
and far from practical situations especially for low bit quantizer
cases [10]. Hence, a deterministic model, instead of a statistical
model, is proposed in this paper.

The block diagrams of a conventional system and the proposed
system are shown in, respectively, Fig. 1a and Fig. 1b. Denote the
input of these two systems, the quantizer, the frequency response
of the linear time invariant filter, the output of the conventional
quantizer, the output of the quantizer of the proposed system, the
output of the conventional system and the output of the proposed
system as, respectively, u(n), Q (·), H(ω), s1(n), s2(n), y1(n) and
y2(n). We assume that u(n) is oversampled. That means, u(n) is
bandlimited within the frequency spectrum (−π

R , π
R ), where R is

the oversampling ratio (OSR). We also assume that H(ω) is an
ideal lowpass filter. That is,

H(ω) =
{

1 |ω| < π
R ,

0 otherwise.

Consider an N bit uniform antisymmetric quantizer with the quan-
tization range [−L, L]. That is,

Q
(
μ(n)

) ≡
{

� sign(μ(n))(ceil( |μ(n)|
�

) − 1
2 ) |μ(n)| � L,

sign(μ(n))L |μ(n)| > L,
(1)

where μ(n) is the input of the quantizer,

sign
(
μ(n)

) ≡
{ μ(n)

|μ(n)| μ(n) �= 0,

0 μ(n) = 0,
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