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In a previous paper [1] it was discussed the viability of functional analysis using as a basis a couple
of generic functions, and hence vectorial decomposition. Here we complete the paradigm exploiting one
of the analysis methodologies developed there, but applied to phase coordinates, so needing only one
function as a basis. It will be shown that, thanks to the novel iterative analysis, any function satisfying
a rather loose requisite is ontologically a basis. This in turn generalizes the polar version of the Fourier
theorem to an ample class of nonorthogonal bases. The main advantage of this generalization is that it
inherits some of the properties of the original Fourier theorem. As a result the new transform has a wide
range of applications and some remarkable consequences. The new tool will be compared with wavelets
and frames. Examples of analysis and reconstruction of functions using the developed algorithms and
generic bases will be given. Some of the properties, and applications that can promptly benefit from the
theory, will be discussed. The implementation of a matched filter for noise suppression will be used as
an example of the potential of the theory.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The Fourier theorem is one of the most valuable mathematical
tool, it is used in all sort of applications, from mobile phones to
system theory. In its standard form the theorem states the possi-
bility to reconstruct a function using a series of sines and cosines.
Over the years different generalizations have been devised for the
theorem. One of the most useful is the use of bases other than the
orthogonal pair, for example using wavelets and frames. Alas these
tools for nonorthogonal bases sport a high computational complex-
ity, tolerate only few specially built functions as bases, and require
different bases for analysis and reconstruction (biorthogonal and
dual bases) [6–9]. These constraints have limited the diffusion of
the wavelets and frames to special applications, compared to the
pervasiveness of the original Fourier theorem.

A recent development is the common waveform analysis [10,
14,15]. There, a couple of even and odd special functions as the
square wave, triangular and the like constitutes the basis. However,
due to the limitation of the mathematics involved (that is based on
an inner product computation), this theory still requires the use of
biorthogonal bases, works only with a limited number of special
bases and vectorial decomposition.

A different approach has been introduced in [1]. There, two pro-
cedures were developed for the analysis. One method has been
called “direct” or brute force and requires the solution of a system
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of equations (much like the algorithm used in frame theory). The
second method has been dubbed “indirect” because uses a novel
iterative algorithm. The two methods have been used together in
[1] to validate each other, although it has been briefly illustrated
the superiority of the indirect method over the direct one.

The theory developed in [1], compared to the known tools as
the wavelets, the frames and the common waveform analysis, ad-
mits a much larger class of functions as bases and, most notably,
utilizes the same basis for analysis and reconstruction. All thanks
just to a change in the analysis paradigm. The idea is that there
is no reason why we should limit ourselves to the use of the in-
ner product in the analysis. In effect the definition of basis does
not mention the analysis phase, requiring only the possibility of
reconstruction of any function of the given space in terms of a
combination of the basis (plus the usual constraints of unicity and
convergence of the reconstruction). In other words we are left free
to choose the analysis method (here we prefer the word “decom-
position” for reasons that will be clear below). Traditionally this
freedom is not exploited as the vast majority of the established al-
gorithms for nonorthogonal bases employ the same inner product
computation of the original Fourier theorem. And thus a “direct”
approach.

The advantage is the possibility of calculating any of the
components independently, but at the same time, oblige to use
biorthogonal functions when the basis is nonorthogonal and
greatly limits the choice of the basis. Instead the recursive com-
putation methodology (the “indirect” method) exploits an iterative
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change of coordinates between the orthogonal basis and the new,
nonorthogonal, one [1].

To find the components of a signal with the indirect method-
ology, one has to start with the decomposition of the signal in
the usual orthogonal basis. This generates a representation in the
Hilbert space. Then an iterative algorithm for change of reference
translates these components from the Hilbert space to the new
basis. The originality of the method is that we do not try to find
directly the components of a function on a nonorthogonal basis.
Instead, we switch from a known representation (the Fourier com-
ponents in the Hilbert space) to a new, equivalent, one. For the
transitive property of equality, if one is a representation of the sig-
nal so is the other.

In the literature there is another main iterative algorithm for
function analysis: the Empirical Mode Decomposition (EMD), as
used for example in Hilbert–Huang transform [17]. However there
are substantial differences between this approach and the EMD.
For one EMD is, by definition, empirical: the basis functions are
derived from the data. Instead here, one first chooses the basis,
then the parameters of the decomposition are computed. The ben-
efit is that one can pick the basis that is best suited to a particular
problem.

Matching Pursuit (MP) [12] is another common algorithm for
function analysis. There a dictionary, generally consisting of a large
collection of time–frequency atoms, is employed in the search for
the best sparse representation of a signal, minimizing the error.
The tool is most useful for compression and coding but is very
computing intensive. Instead in [1] there is much more freedom
in the choice of the basis, and the decomposition is purely in fre-
quency. And for each basis an exact representation of the signal
is computed up to any chosen frequency. In other words the error
can be confined at highest frequencies and with a very efficient
algorithm.

An added advantage of the methodology is that one can still
use the metric of the Hilbert space to assert the convergence of
the procedure. The only drawback of the iterative method is that to
find the component at a given frequency, generally all the compo-
nents at lower frequency must be computed. But we think that this
is not an issue given the possibilities that the new theory opens
up.

A further advantage is that one can now use the same basis for
analysis and reconstruction (in contrast with the usual tools for
nonorthogonal bases).

But probably the main benefit of the “indirect methodology” is
that it is applicable even to polar decomposition and this will help
us to surmount the borders of linear dependence.

As a matter of fact all of the cited tools are based on the meth-
ods of linear algebra, so inherently vectorial. However, at the time
of interpreting the analysis results, these tools are no match for
the simplicity of a Fourier power spectrum in terms of amplitude
and phase.

The natural extrapolation of the theory developed in [1] is thus
applying the same computing method to phase decomposition. The
benefit of phase (in orthogonal terms: “polar”) decomposition is in
dealing with a single function as a basis. And a single function
as a basis has the indisputable advantage (in contrast with the
vectorial tools) that some of the properties of the Fourier theo-
rem can be extended also to nonorthogonal bases, and this greatly
enhances the applicability of the tool, as it will be clear in the fol-
lowing.

When orthogonal bases are involved, polar and vectorial rep-
resentations are essentially the same thing, as there is a trivial
equation connecting the two coordinate systems. Instead, with
nonorthogonal bases, the vectorial and phase decompositions of
a function are completely different beasts, and there is no simple
way to pass from one to the other. An example could clarify the

point. Imagine of having as a function a square wave with arbitrary
phase. If we use vectorial decomposition and a basis consisting of
even and odd square waves, a viable basis according to [1,10,14,15]
(they all give the same results, although the last papers are based
on traditional approach and biorthogonal bases), it is evident that
we would need an infinite series of square waves to reconstruct
the function. Because the nonorthogonal vectorial decomposition
cannot easily characterize the arbitrary phase. Instead, when using
phase decomposition and a single square wave as a basis [13], the
result of the analysis is a single couple of parameters at the given
frequency: amplitude and phase. Much more efficient and compre-
hensible.

The disadvantage of the phase decomposition is that its out-
come is a set of two parameters: amplitude and phase (or more
generally shift) that are not homogeneous, differing dimensionally,
and hence preventing the use of matrices and linear algebra in the
computations (that would be precluded anyway because in case of
nonorthogonal bases the resulting systems will be nonlinear, as it
will be shown below). As a consequence, for orthogonal bases the
vectorial analysis is preferred, as in the most common flavors of
the Fourier theorem. Whereas, when using nonorthogonal bases,
the phase decomposition is more widely applicable and delivers
more interesting results, even with the added burden of dealing
with couples of non-homogeneous parameters.

A previous paper [13] introduced the phase decomposition over
nonorthogonal bases but with a focus on a special application.
There, it was demonstrated that the square wave is one of the
viable bases for phase decomposition. As the square wave is the
natural output of digital systems, it was exploited in the design of
very efficient, multiplierless, signal synthesizers. The systems em-
ploying the square wave are very frugal on computing demands
and suitable for many applications.

The goal of this article is to disclose the bigger picture, re-
vealing some of the properties and consequences of the theory
of phase decomposition over nonorthogonal bases and indicating
other applications.

2. The iterative analysis methodology

Here the rationale behind the new computation scheme will be
briefly summarized in order to introduce a fast analysis algorithm
and other consequences of the decomposition.

Lemma. Given a Hilbert space H with the usual orthonormal basis, then
any function S(x) ∈ H spans the space when using the same frequency–
phase reconstruction algorithm of the polar Fourier decomposition. I.e.
{S(nx)} is complete (n being the frequency).

We shall prove the feasibility for real periodic functions f (x),
S(x) ∈ L2[−π,+π ] (the space of periodic Lebesgue square inte-
grable functions). While the extension to complex valued func-
tions, different periods and transforms is straightforward.

Given any periodic function f (x) ∈ L2[−π,+π ] satisfying the
Dirichlet conditions, it can be expressed as a Fourier series. We
omit here an eventual average (a DC component) from the series
as it is a simple constant that will not change our conclusions:

f (x) =
∞∑

k=1

bk cos(kx + ϑk) (1)

and given another nonzero periodic function with Fourier series:

S(x) =
∞∑

p=1

sp cos(px + φp) (2)
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