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a b s t r a c t

An iterative time domain formulation for finite element model updating in structural

dynamics is presented. The approach is supported on a derivation showing that the

discrepancy between observations and model predictions can be expressed as a convolu-

tion between the state of the system and a sequence of pseudo-Markov parameters which

are linear in the change of the free parameters. The approach is illustrated by updating all

the stiffness and damping parameters of a twenty degree of freedom shear beam using four

noise contaminated measurements.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Finite Element (FE) model updating is the process by which an initial model (referred to in this paper as a nominal

model) of a dynamical system is modified (updated) in order to minimize a metric of the difference between system
response measurements and model predictions [2]. In the existing literature, two general approaches can be distinguished;
those that reduce the measured data to spectral features by means of system identification and those that operate directly
on the data without reduction. Methods that operate on the basis of spectral reduction update model parameters to reduce
the difference between the identified and the updated FE model eigenvalues and eigenvectors. Among these, sensitivity
based methods are used most commonly [7]. Well-known difficulties when applying sensitivity methods are determining
correct pairing between the FE model and the identified mode shapes, limitations on the number of modes and frequencies
that can be accurately extracted from the measurements and the hypersensitivity of identification algorithms to
computational user-defined parameters, especially in mode shape identification.

Methods that operate directly on the measurements, especially in cases where the excitation is not fully characterized
deterministically, are typically implemented using adaptive data assimilation methods such as extended Kalman filters [4]
and, most recently, unscented Kalman filters [9,10]. The aim is to minimize the 2-norm of the difference between
measurements and estimator output time histories. Adaptive data assimilation methods operate by expanding the state
vector to include model parameters and use sequential Bayesian estimation to estimate the expanded state as
measurements become available, thus resulting in a nonlinear estimation problem.

The updating approach presented in this paper rests on a derivation showing that the difference between measurements and
predictions, i.e., the output residuals, can be expressed as a convolution between the system state and a set of pseudo-Markov
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parameters. In the proposed approach the updated FE model evolves from an initial estimate M0(yo) to a model that at the jth
iteration is denoted as Mj(yj) where y are the free model parameters. In contrast with standard optimization techniques, the
proposed method does not progress toward the solution using model sensitivities but rather takes advantage of the fact that given
the correct state sequence the update of the discrete time transition matrix is a linear function of the output residuals. Since the
true state of the system is not known, state estimation is required. State estimation is accomplished through an observer derived
on the premise that the main source of output discrepancy lies in model error [3]. In essence, the main contribution of the paper
consists in decoupling the nonlinear estimation problem typically encountered in the non-linear Kalman filter approach into two
sequential linear problems, namely a linear state estimation and a linear least square problem.

To make the update linear in each cycle the transition and input to state matrices in discrete time are taken as first order
approximations, which can be made as accurate as required by using a small enough discretization time step. The two
operating assumptions are that the mass matrix is known and that the measurements are part of the state vector. This paper
describes the approach and contains a numerical section where the method is implemented to update all the stiffness and
damping coefficients of a 20-DOF shear beam using noise-contaminated measurements from four coordinates.

2. State estimation

The most popular methodology for recursive state estimation and tracking is the Kalman filter (KF) [6]. The KF performs
optimally in linear systems whenever discrepancies between observations and model predictions arise from process and
measurement noises of known covariance and white spectra [5]. In the situation that concerns us here, however, the
operating assumptions differ from those in the derivation of the Kalman filter and an alternative method is desirable. In
particular, in our case the bulk of the discrepancy between model predictions and measurements derive from inaccuracy in
the model itself. Examination of the theory of Robust Kalman filtering [8], which extends the standard Kalman filter to the
situation where the model is uncertain, showed that the methodology is unlikely to offer a practical solution for large
dimensional structural problems. In particular, the methodology involves the solution of two Ricatti equations, demands a
specific parameterization of the errors in the state transition and input to state matrices and, as in the standard Kalman
filter, requires specification of covariance matrices for the process and the measurement noise. A simple estimator
designed explicitly to consider errors in stiffness and damping that does not require parameterization of the model error
appears in Hernandez and Bernal [3] and is used here in the state estimation. The recursive state estimator is given as

x̂kþ1 ¼ ðI�CT CÞÂx̂kþðI�CT CÞB̂ukþCT ykþ1 ð1Þ

where unless stated otherwise I is the identity matrix of dimension N, Â 2 RN�N and B̂ 2 RN�rare the state transition and
input-to-state matrices of the nominal model respectively. C 2 Rm�N is the state-to-output matrix, x̂kþ1 ¼ RN�1is the
estimated state at time t¼(kþ1)Dt, where Dt is the time step, uk 2 Rr�1 is the measured input at time t¼kDt and ykþ1 2

Rm�1 is the output vector of available measurements at time t¼(kþ1)Dt. Throughout the paper the notation ẑ will be used
to denote the estimated value of the quantity z.

The discrete time state transition matrix Â in Eq. (1) is related to the continuous time Ac by the following matrix
exponential relation

Â¼ eÂcDt ¼ IþÂcDtþh:o:t: ð2Þ

For a second order linear structural system Ac is defined as

Âc ¼
0q�q Iq�q

�M�1K̂ �M�1ĈD

" #
ð3Þ

where M¼MT 40 2 Rq�q is the mass matrix of the system (assumed known), ĈD ¼ CT
DZ0 2 Rq�q is the damping matrix and

K̂¼ K̂
T
Z0 2 Rq�q is the stiffness matrix of the nominal model. The matrix B̂ depends on the input to state matrix in

continuous time Bc and on the operating assumption regarding the behavior of the inputs. The Bc matrix is

Bc ¼
0q�r

M�1b2

" #
ð4Þ

where b2 2 Rq�r is a vector that describes the spatial position of the input forces. On the premise that the input is a band
limited function it is shown in Bernal [1] that

B¼ ÂBcDt ð5aÞ

Substituting Eq. (2) into Eq. 5a gives

B̂¼ ðIþÂcDtþh:o:t:ÞBcDt� BcDt ð5bÞ

which shows that the first order approximation of the discrete input to state matrix is not a function of the stiffness or the
damping and can thus be treated as known. The C matrix is known and defined by the output equation as

yk ¼ Cxkþvk ð6Þ

where n is the output noise.
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