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Abstract

Significant error rates are common in nonlinear communication and digital storage channels, due
to nonlinear intersymbol interference (ISI). The decision-feedback equalizer (DFE) is often used to
combat ISI, by providing nonlinear feedforward and feedback filters to compensate the nonlinear dis-
tortion. This paper presents recent work on a DFE that incorporates fixed-lag smoothing, termed the
FLSDFE. We derive the FLSDFE estimator X̂t−n|t for the case of binary-phase-shift keying inputs
to a digital communication channel described by a truncated Volterra series. Simulation results are
presented, showing the existence of ‘resonance’ phenomena within a state-space model of filtering-
error propagation. The FLSDFE is shown to experience equalization performance that is strongly
channel-dependent, highlighting a potential problem with robustness.
© 2005 Published by Elsevier Inc.

1. Introduction

Nonlinearities in a communication or digital storage channel are known to increase er-
ror rates, due to nonlinear intersymbol interference (ISI) [1]. Decision-feedback equalizers
(DFEs), using nonlinear feedforward and feedback filters, are often employed to combat
ISI, with varying effectiveness. A recent paper introduced a blind DFE that incorporated
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fixed-lag smoothing [2], herein termed the FLSDFE (fixed-lag smoothing DFE). Intu-
itively, smoothing is expected to offer improved equalization performance, as we make
use of more samples [3]. Additionally, by using a Volterra model [1,4–6], we might
expect improved performance by more closely matching the intrinsic nonlinearity of a
given communication channel. This paper provides evidence that the combination of fixed-
lag smoothing with decision-feedback equalization may provide worse performance than
might be expected, at least for some linear and nonlinear channels, and that the perfor-
mance of the FLSDFE appears to be highly channel-dependent.

Our paper is organised as follows. Section 2 provides a derivation of the FLSDFE esti-
mator X̂t−n|t for the case of binary-phase-shift keying (BPSK) inputs to a communication
channel described by a truncated Volterra series. In Section 3, we show via simulations
that, for some channels and smoothing lags, the use of fixed-lag smoothing in the FLSDFE
algorithm produces lower bit-error rates. For other channels and smoothing lags, however,
we show that the FLSDFE may provide worse performance than might be expected, so that
the performance of the FLSDFE appears to be highly channel-dependent. Finally, we illus-
trate the use of a particular state-space model in qualitative predictions of the performance
of the FLSDFE algorithm on a given channel.

2. Derivation of FLSDFE for binary-phase-shift keying (BPSK)

Let {Xt } and {Yt } represent the input and output baseband envelopes of a communi-
cation system, where t ∈ {. . . ,−1,0,1, . . .} is discrete-time. We regard Xt as a random
symbol in A2 = {−1,1}, the alphabet of BPSK [7]. Suppose Xt and Yt are related by the
pth-order Volterra series model [1,4–6],

Yt =
N∑

k1=0

h1(k1)Xt−k1 +
N∑

k1=0

N∑
k2=k1

h2(k1, k2)Xt−k1Xt−k2

+
N∑

k1=0

N∑
k2=k1

. . .

N∑
kp=kp−1

hp(k1, . . . , kp)Xt−k1 . . .Xt−kp + Vt , (1)

of memory N ∈ {0,1, . . .}, with Volterra kernels h1(k1), . . . , hp(k1, . . . , kp). {Vt } is inde-
pendent and identically distributed, zero-mean Gaussian noise.

The problem we consider is the estimation of BPSK message symbol xt−n at smooth-
ing lag n ∈ {0, . . . ,N}, given only the observed output sequence yt = {yt , yt−1, . . .}. We
assume that the kernels h1(k1), . . . , hp(k1, . . . , kp) and noise variance σ 2

v are fixed and
known. Lowercase quantities xt and yt denote sample values of the random variables Xt

and Yt , respectively.
Consider the output Yt−k , where k ∈ {0, . . . , n} is an auxiliary lag index and n ∈

{0, . . . ,N} is the fixed smoothing lag of the FLSDFE. Since Xt is a random symbol in
A2, observe that for m ∈ {1,2, . . .}, X2m

t has the (degenerate) probability distribution

P
(
X2m

t = x2m
t

) = 1, ∀xt ∈A2, (2)
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