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Abstract

During the course of processing acceleration data from mechanical systems it is often desirable to integrate the data to
obtain velocity or displacement waveforms. However, those who have attempted these operations may be painfully aware
that the integrated records often yield unrealistic residual values. This is true whether the data has been obtained
experimentally or through numerical simulation such as Runge—Kutta integration or the explicit finite element method. In
the case of experimentally obtained data, the integration errors are usually blamed on accelerometer zero shift or amplifier
saturation. In the case of simulation data, incorrect integrations are often incorrectly blamed on the integration algorithm
itself. This work demonstrates that seemingly small aliased content can cause appreciable errors in the integrated
waveforms and explores the unavoidable source of aliasing in both experiment and simulation—the sampling operation.
Numerical analysts are often puzzled as to why the integrated acceleration from their simulation does not match the
displacement output from the same simulation. This work shows that these strange results can be caused by aliasing
induced by interpolation of the model output during sampling regularisation.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

When integrating acceleration data to obtain estimates of velocity or displacement, errors from a variety of
sources can cause the integrated waveforms to drift from the true values, regardless of whether the data was
collected experimentally or from a simulation. When experimental data shows strange integration, the drift is
usually blamed on the transducer or amplifier saturation. Numerical analysts often suffer the same integration
problems. Many have integrated the acceleration output from their model and wondered why it didn’t match
the displacement output at the same node. Some mistakenly blame the numerical integration algorithm itself.
Although the list of potential sources of low frequency error is long, it is the intent of this work to demonstrate
an as-of-yet unexplored source of low frequency errors, aliasing.
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The work presented in this paper demonstrates that aliasing can introduce low-frequency errors in the
acceleration waveform whether it is collected experimentally or through simulation. These aliasing errors will
cause the integrated waveforms to drift.

If a continuous waveform is represented by a finite collection of samples, aliasing is impossible to prevent. All
experimentally collected waveforms of finite duration, and that have been discretised by an analog to digital
converter, will contain aliased content to some degree. If the anti-aliasing filter is well-chosen, and the sample rate
is high compared to the filter cut-off frequency, then the aliased content can be minimised but not eliminated.
Simulation data is also sampled. It, therefore, also, contains aliased content. The aliased content from explicit
dynamics finite element simulation can be minimised by requesting the output at every solution increment [1].

Even after correctly requesting the output, the results can still be corrupted by aliasing. Since the explicit
solver uses a variable time step, the results are often interpolated to the smallest solution increment to
regularise the data. Matlab’s implementation of the Runge—Kutta integration also uses a variable time step [2].
The user can request the solution at regular intervals, but this has no effect on the time step. The output at the
user-specified increments is an interpolated version of the solution [2].

This work shows that the interpolation of irregularly spaced data will lead to aliasing that can cause the
integrated waveforms to drift. This is the likely cause for results where the integration of simulated
acceleration data does not match the velocity and displacement output from the same model.

2. Source of aliased content

It is never possible to eliminate aliasing completely from measured data. As will be discussed below, this
effect comes about from three sources: the infinite bandwidth induced by finite record length, and the
spectrum replication caused by representation of the data by its discrete-time samples, and in the case of
experimentally measured data, the finite attenuation provided by non-ideal anti-aliasing filters.

It is impossible to experimentally record a signal of infinite duration. Therefore, all recorded signals must
have frequency content that approaches infinity due to the convolution theorem. Observing a signal over finite
time duration is equivalent to multiplication of that signal with a rectangular window function. According to
the convolution theorem [3, p. 26], multiplication of the signal by the rectangular window function in the time
domain is equivalent to the inverse transform of the convolution of the signal’s transform with the transform
of the window function. In this case, the transform of the window function is the sinc function, which is
infinite in bandwidth [3, p. 20]. The Fourier transform of the finite-length signal is then given by

Xw(f) = X())3W(f), (1)

where (%) denotes convolution. Since W/(f) is infinite, the convolution of W( f) with a spectrum of finite length
produces a spectrum of infinite length. The magnitude of the content may become small as frequency
increases, but it persists nonetheless. Therefore, the act of observing an event over finite time duration induces
infinite support in its Fourier spectrum.

The operation of sampling a continuous-time signal, x.(¢), at discrete instances of time with period T is
equivalent to modulation of the signal with an impulse train. The transform of the sampled signal is then the
convolution of the transforms of the impulse train and the continuous-time signal yielding [4, p. 143]
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due to the sifting property of the impulse train.

Eq. (2) assumes that the area of the impulses in the impulse train is unity. However, in the digital
representation, the height of the impulses is unity while the area is equivalent to the sampling interval T,. A
true impulse in the digital domain has height 7§ so that the area is unity. Because the area of the digital
sampling impulses is Ty, Eq. (2) becomes [5, p. 68]
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