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A B S T R A C T

The pressure waves propagating through an incompressible inviscid fluid that moves in a

circular cylindrical long elastic tube are considered. The reductive perturbation method is

used to derive the KdV equation from the hydrodynamic equations of the system. The Euler–

Lagrange variational technique described by Agrawal has been applied to formulate the time-

fractional KdV equation. The derived time-fractional KdV equation is solved by employing

the variational-iteration method represented by He. The effects of the tube and fluid pa-

rameters and the time fractional order on the propagation of pressure waves are investigated.
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1. Introduction

The propagation of pressure waves in fluid that moves in large
vessels was studied by many authors, e.g. References 1–16. Many
of the works studied the small amplitude wave propagation
in elastic tubes, ignored the nonlinear effects and focused on
the dispersive characteristic [3–5].When the nonlinear character

appears, either finite amplitude or small-but-finite ampli-
tude wave is considered, depending on the nonlinearity order.
The propagation of finite waves through fluid filled elastic or
viscoelastic tubes was studied [6–9]. Also, the small-but-
finite amplitude waves propagating in distensible tubes were
investigated [10–16], where the Korteweg–de Vries (KdV) equa-
tion appears due to the balancing between the nonlinearity
and the dispersion effects.
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The KdV equation as evolution and interaction model of
nonlinear waves is employed to represent a wide range of physi-
cal phenomena. The KdV equation was first formulated as an
evolution equation governing one-dimensional, small ampli-
tude, long surface gravity waves propagating in a shallow water
channel [17]. Afterward, the KdV equation has appeared in a
number of other physical problems such as ion-acoustic waves,
collision-free hydro-magnetic waves, plasma physics, strati-
fied internal waves, lattice dynamics, etc. [18]. By means of the
KdV model, some theoretical physics phenomena in quantum
mechanics domain and continuum mechanics for shock wave
formation are explained.The KdV model is also applied in many
scientific fields like fluid dynamics, aerodynamics, solitons, tur-
bulence, boundary layer behavior and mass transport.

Most of the forces in nature are non-conservative: dissipa-
tive and/or dispersive forces. The classical mechanics treated
conservative forces using integer differential equations, while
the non-conservative forces can be described in terms of the
non-integer differential equations. Non-integer differentia-
tion and integration is called Fractional Calculus, which is a
field of mathematics study that generalizes the traditional defi-
nitions of calculus integral and derivative operators. During the
last decades, Fractional Calculus has acquired importance due
to its applications in various fields of science and engineer-
ing, including electrical networks, signal processing, optics, fluid
flow, viscoelasticity, rheology, probability and statistics, dy-
namical process in self-similar and porous structures, diffusive
transport, control theory of dynamical systems, electrochem-
istry of corrosion, and so on [19–35].

Riewe [19,20] used fractional derivatives [21–23] in the action
to have non-conservative Euler–Lagrange equations. In terms
of Riemann–Liouville fractional derivatives, Agrawal [24–26] used
variational technique to formulate fractional equations of
motion. These Euler–Lagrange equations are employed to in-
vestigate different real problems [27–35].

The fractional differential equations are solved by apply-
ing several methods such as: Fourier transformation method,
Laplace transformation method, operational method, and the
iteration method [21–23]. However, most of these methods are
suitable only for special types of fractional differential equa-
tions, called linear with constant coefficients. Recently, there
are some works dealing with the solutions of nonlinear frac-
tional differential equations using techniques of nonlinear
analysis such as: Adomian decomposition method (ADM)
[36–42], variational-iteration method (VIM) [43–48], homotopy
perturbation method (HPM) [49,50] and others. Adomian de-
composition method [36–38] succeeded to solve accurately
different types of fractional nonlinear differential equations
by applying the Adomian polynomials. This method is applied
to study many problems arising from applied sciences and en-
gineering [39–42]. The variational-iteration method [43–46] was
successfully employed to solve many types of linear, nonlin-
ear and fractional differential equations that describe scientific
and engineering problems [46–48]. As advantages over ADM,
the VIM solves differential equations without using Adomian
polynomials and has no linearization or perturbation for solving
the nonlinear and fractional problems. The VIM principles for
solving the differential equations are given in many papers,
e.g. References 46–48. The VIM solution is provided as a con-
vergent series, which may lead to exact solution for linear

differential equations and to an efficient numerical solution
for nonlinear and fractional differential equations. The series
solution begins with a trial function that can be used as the
solution of the linear term of the differential equation.

Our main motive here is to study the time fractional pa-
rameter effects on the propagation of solitary pressure waves
through a fluid filled elastic tube.Therefore, beside what is con-
sidered in Reference 16, the derived nonlinear KdV equation
is transformed using variational technique described by Agrawal
[24–26] into the time fractional KdV (TFKdV) equation [45]. The
TFKdV equation is solved by applying VIM [46–48] developed
by He and the effect of the fractional order is studied.

This paper is organized as follows: The basic set of tube and
fluid equations, which governs our system, is presented in
section 2. In section 3, the KdV equation is derived by apply-
ing the reductive perturbation method [51]. Section 4 is devoted
to derive and solve the time fractional KdV (TFKdV) equation
using variational methods. Finally, some results and discus-
sion are presented in section 5.

2. Basic equations of motion of the tube and
fluid

A circular cylindrical long tube of un-deformed radius R0 , sub-
jected to a uniform initial inner pressure P0 is considered. A
position vector r of a general point on the tube is described
as [11,12]:

r r u z t e zer z= + +[ ( , )]0 ˆ ˆ (1a)

z Zz= λ (1b)

where r0 is the radius of the tube after a finite static defor-
mation, u z t( , ) is a finite dynamic time dependent deformation
in the tube radius, ê r and êz are the radial and axial unit
vectors, respectively in the cylindrical polar coordinates. Z is
the axial coordinate before the deformation, z is the axial co-
ordinate after the static deformation and λz is the axial stretch
ratio. The equation of motion of a small element of the tube’s
wall in the radial direction is given by [11,12]
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where ρ0 and μ are the mass density and the shear modulus
of the tube material, respectively. ∑( , )z t is the strain energy
density function, P z t*( , ) is the fluid pressure at the final inner
deformed tube radius rf and H is the initial un-deformed tube
thickness. r and z are the radial and axial cylindrical coordi-
nates, respectively after both static and dynamic deformations
and t is the time parameter. λ1 and λ2 are the axial and radial
direction stretches, respectively and are represented by [11,12]

λ λ1 = zΛ (3a)

λ λ2 0= +r u z t R( , ) (3b)
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