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a b s t r a c t

Stabilisation diagrams have become a standard tool in the linear system identification, due
to the capability of reducing the user interaction during the parameter extraction process.
Their use in the presence of nonlinearity was recently introduced and it was demon-
strated to be effective even in presence of non-smooth nonlinearities and high modal
density. However, some variability of the identification results was reported, in particular
concerning the quantification of the nonlinear effects, because of the presence of spurious
modes, due to an over-estimation of the system order.

In this paper the impact of spurious poles on the nonlinear subspace identification is
investigated and some modal decoupling tools are introduced, which make it possible to
identify modal contributions of physical poles on the nonlinear dynamics. An experi-
mental identification is then conducted on a multi-degree-of-freedom system with a local
nonlinearity and the significant improvements of the estimates obtained by the proposed
approach are highlighted.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that conventional linear estimators give contaminated results in presence of nonlinearities and the
extraction of the underlying linear system properties hence becomes a difficult task. To solve this problem, in the last three
decades several nonlinear identification methods have been developed, most of them being applicable to single-degree-of-
freedom (SDOF) systems. More recently, multi-degree-of-freedom (MDOF) systems have been successfully dealt with [1];
however, only a limited number of nonlinear terms and degrees of freedom were included, due to the complexity of
algorithms and required computational effort. To overcome these problems, the method called nonlinear subspace
identification (NSI) has been proposed [2], by using the perspective of nonlinearities as unmeasured internal feedback
forces [3]. This time domain method exploits the robustness and high numerical performances of algorithms, i.e., the basis
of the stochastic subspace identification (SSI), successfully adopted in many linear applications [4–10]. A dual approach has
been developed in the frequency domain, termed frequency-domain nonlinear subspace identification (FNSI) method [11],
which allows to discriminate frequencies according to information content and signal-to-noise ratio (SNR), thus increasing
the accuracy and reducing the computational burden.

It is a matter of fact that system identification results are improved by over-specifying the model order [6], computing
system poles and then removing spurious poles. This is usually performed with the help of stabilisation diagrams,
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constructed by estimating poles with increasing model order and by plotting only those poles for which the relative
difference in modal frequency, damping ratio and shape is below a user-defined value. In order to make stabilisation
diagrams clearer, the modal transfer norm was proposed in [7] for a combined deterministic-stochastic subspace
identification. Moreover, different techniques were introduced to reduce the user interaction: a clustering algorithm was
proposed in [12], a component energy index was defined in [9] to estimate the model order and a hierarchical clustering
algorithm was adopted in [10] for analyzing continuously collected data of a bridge.

The use of stabilisation diagrams in the presence of nonlinearity was first introduced in [13] and it was demonstrated to
be effective for retrieving linear system parameters from nonlinear data generated by numerical experiments, even in
presence of non-smooth nonlinearities, high modal density and high non-proportional damping. However, some variability
of the identification results was reported, in particular concerning the quantification of the nonlinear effects.

The objective of the present paper is to investigate the role of spurious poles, to show how they affect the estimates of
the nonlinear contributions to the system dynamics and how to improve the estimates. For this investigation, a modal
decoupling procedure is introduced and the modal mass is computed for system poles. This procedure is illustrated by
processing experimental measurements conducted on a scaled building connected to a metallic wire, which adds strong
nonlinear effects. A new perspective is finally introduced, based on the identification of modal contributions due to physical
poles on the nonlinear dynamics.

The paper is organised as follows. The theoretical background of the NSI is outlined in Section 2. This is followed by the
description of modal decoupling tools (Section 3), which act in conjunctionwith stabilisation diagrams to remove spurious poles.
A numerical validation is conducted in Section 4, where a system of low dimensions is studied. The experimental work is finally
described in Section 5, where the parameter estimation is conducted both with low excitation level (linear identification) and
high excitation level (nonlinear identification). The conclusions of the present study are summarised in Section 6.

2. Nonlinear subspace identification

Let us consider the equation of motion of a dynamical discrete system with h degrees of freedom, carrying lumped
nonlinear springs and dampers:

M€z tð ÞþCv _z tð ÞþKz tð Þþ
Xp
j ¼ 1

μjLnjgj tð Þ ¼ f tð Þ ð1Þ

where M, Cv and K are the mass, viscous damping and stiffness matrices respectively, z tð Þ is the generalised displacement

vector and f tð Þ the generalised force vector, both of dimension h, at time t. The nonlinear term N z tð Þ; _z tð Þ½ � ¼ Pp
j ¼ 1

μjLnjgj tð Þ is

expressed as the sum of p components, each of them depending on the scalar nonlinear function gj tð Þ, which indicates the
class of the nonlinearity, through a location vector Lnj, whose elements may assume the values 1, �1 or 0. By moving the
nonlinear terms of Eq. (1) to the right hand side

M€z tð ÞþCv _z tð ÞþKz tð Þ ¼ f tð Þ�
Xp
j ¼ 1

μjLnjgj tð Þ ¼ f tð Þ�fnl tð Þ ð2Þ

the original system may be viewed as subjected to the external forces f tð Þ and the internal feedback forces caused by
nonlinearities fnl tð Þ. This perspective, already chosen in [3] to develop the frequency domain method called nonlinear
identification through feedback of the outputs (NIFO), is on the basis of the present time domain identification method,
referred to as NSI [2]. In the case of measurements y involving displacements only, the state-space formulation of the
equation of motion is
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corresponding to the state vector x¼ zT _zT
� �T (superscript T denotes transposition) and to the input vector

u¼ f tð ÞT �g1 tð Þ … �gp tð Þh iT
or, in a more compact form

_x¼ AcxþBcu
y¼ CxþDu ð5Þ

This continuous model may be converted into the following discrete state-space model, assuming zero-order hold for the
input u with sampling period Δt:

xkþ1 ¼AxkþBuk
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