Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ymssp

The influence of external dynamic loads on the lifetime of rolling element bearings: Experimental analysis of the lubricant film and surface wear $\stackrel{\text{the}}{\sim}$

William Jacobs, Brecht Van Hooreweder*, Rene Boonen, Paul Sas, David Moens

KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300, 3001 Heverlee, Belgium

ARTICLE INFO

Article history: Received 15 March 2014 Received in revised form 17 February 2015 Accepted 24 April 2015 Available online 1 June 2015

Keywords: Deep groove ball bearings Test rig Dynamic load Lifetime Lubricant film Surface wear

ABSTRACT

Precise prediction of the lifetime of rolling element bearings is a crucial step towards a reliable design of many rotating machines. For bearings subjected to highly varying loads, recent research emphasises a strong reduction of the actual bearing lifetime w.r.t. the classically calculated bearing lifetime. This paper experimentally analyses the influence of external dynamic loads on the lifetime of rolling element bearings. A novel bearing test rig is introduced. The test rig is able to apply a fully controlled multi-axial static and dynamic load on a single test bearing. Also, different types and sizes of bearings can be tested. Two separate investigations are conducted. First, the behaviour of the lubricant film between the rolling elements and raceways is analysed. Increased metallic contact or breakdown of the film during dynamic excitation is investigated based on the measured electrical resistance through the bearing. The study shows that the lubricant film thickness follows the imposed variations of the load. Variations of the lubricant film thickness are similar to the variations when the magnitude of the static bearing load is changed. Second, wear of the raceway surfaces is analysed. Surface wear is investigated after a series of accelerated lifetime tests under high dynamic load. Due to sliding motion between asperities of the contacting surfaces in the bearing, polishing of the raceway honing structure occurs. This polishing is clearly observed on SEM images of the inner raceway after a test duration of only 0.5% of the calculated L_{10} life. Polishing wear of the surfaces, such as surface induced cracks and material delamination, is expected when the bearing is further exposed to the high dynamic load.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The importance of research related to failure and damage detection of bearings is self-explanatory. Rolling element bearing failure is one of the foremost causes of breakdown in rotating machinery [1]. Bearings fail prematurely in service due to contamination, poor lubrication, poor fits, misalignments, etc. Motor bearing faults account for more than 40% of the induction motor's failure [2]. Gearbox bearing failure is the top contributor of the wind turbines downtime [3]. Bearings are

* Corresponding author. Tel.: +32 16 372688.

http://dx.doi.org/10.1016/j.ymssp.2015.04.033 0888-3270/© 2015 Elsevier Ltd. All rights reserved.

 $^{^{\}scriptscriptstyle{\pm}}$ For the MSSP Special Issue in Honor of Professor Simon Braun.

E-mail address: Brecht.Vanhooreweder@kuleuven.be (B. Van Hooreweder).

Nomenclature	k _{AS}	Combined stiffness of the air springs
c_{AS} Combined damping of the air springs c_B Combined damping of the bushings c_MS Damping of the mounting system c_S Equivalent damping of the spindle c_{TB} Damping of the test bearing C_{TB} Capacitance of the test bearing f_e Frequency of excitation $F_{a,d}$ Axial dynamic bearing load $F_{r,d}$ Radial dynamic bearing load $F_{r,s}$ Radial static bearing load	$k_{ m B}$ $k_{ m MS}$ $k_{ m TB}$ $m_{ m F}$ $m_{ m H}$ $m_{ m S}$ $R_{ m K}$ $R_{ m TB}$ $V_{ m out}$ $Z_{ m TB}$	Combined stiffness of the bushings Stiffness of the mounting system Bending stiffness of the spindle Stiffness of the test bearing Equivalent mass of the frame Mass of the test bearing housing Equivalent mass of the spindle Known resistance of the electrical circuit Electrical resistance of the test bearing Voltage source of the electrical circuit Voltage drop over the test bearing Impedance of the test bearing

cheap, but bearing failure is not. A 4000€ wind turbine bearing replacement can turn into a 200,000€ project, even without including the cost of downtime [4].

Lifetime calculations of bearings are based on the ISO 281 standard. For bearings subjected to highly varying loads, recent research emphasises a strong reduction of the actual bearing lifetime w.r.t. the calculated bearing lifetime. For instance in wind turbines, fans and paper making machines, the rolling element bearings are susceptible to failure caused by external machine vibrations. Failure rates of wind turbines approximating three times the failure rate of conventional generators are observed [5]. This is partly due to the unique operational conditions of the bearings, resulting from widely varying wind loads and high vibration levels [6].

Elaborate research on the effect of external dynamic loads on the bearing lifetime is conducted by Gegner and Nierlich [7–10]. They developed a test rig which allows applying controlled static and dynamic loads on cylindrical roller bearings. Accelerated lifetime tests under high dynamic load are performed. After only 10⁷ revolutions of the test bearing, significant wear of the raceway surfaces is observed. Based on XRD analysis, a decrease of the calculated bearing lifetime of 80% due to the dynamic excitation is estimated.

This paper further discusses the effect of external dynamic loads on the bearing lifetime. Two separate investigations are described. First, the behaviour of the lubricant film between the rolling elements and raceways is analysed. Increased metallic contact or breakdown of the film during dynamic excitation is investigated based on the measured electrical resistance through the bearing. Second, wear of the raceway surfaces is analysed. Surface wear is investigated after a series of accelerated lifetime tests under high dynamic load.

The behaviour of the lubricant film and wear of the raceway surfaces is analysed using a novel bearing test rig. The test rig is able to apply a fully controlled multi-axial static and dynamic load on a single test bearing. Also, different types and sizes of bearings can be tested. This unique test rig is designed and constructed in-house. In the current study, a deep groove ball bearing 6302 (designation according to DIN 623) with an outer diameter of 52 mm is mounted. It is lubricated using all-purpose industrial grease, consisting of lithium soap and mineral oil.

The test rig is introduced in Section 2. Both the test rig design and the test rig measurements are discussed. Section 3 describes the behaviour of the lubricant film under high dynamic load. The influence of both the excitation properties (frequency and amplitude) and the bearing operational conditions (static load, operational temperature and rotational speed) is analysed. In Section 4, the results of a series of accelerated lifetime tests are reviewed. The failure mode, test conditions and results are discussed.

Fig. 1. Concept (a) and overview (b) of the presented test rig. The test bearing is mounted on a spindle and driven by an electric motor. The actuators apply a radial force (F_r) and an axial force (F_a) on the test bearing.

Download English Version:

https://daneshyari.com/en/article/561031

Download Persian Version:

https://daneshyari.com/article/561031

Daneshyari.com