Signal Processing 127 (2016) 44-55

journal homepage: www.elsevier.com/locate/sigpro

Contents lists available at ScienceDirect

SIGNAL

PROCESSING

Signal Processing

Target tracking using adaptive compressive sensing
and processing

loannis Kyriakides

@ CrossMark

Department of Electrical and Computer Engineering, University of Nicosia, Cyprus

ARTICLE INFO

ABSTRACT

Article history:

Received 8 August 2015
Received in revised form

23 February 2016

Accepted 26 February 2016
Available online 3 March 2016

Keywords:
Compressive sensing
Particle filtering
Target tracking

Compressive sensing and processing (CSP) performs signal acquisition and processing at
sub-Nyquist rates. This makes CSP an attractive option in radar target tracking as it
reduces computational load in sequential signal acquisition and processing. However, CSP
is accompanied by a reduction in signal to noise ratio (SNR) which results to a dete-
rioration of tracking performance. In order to improve tracking performance CSP can be
configured using information available on the target state which is provided by the
sequential estimation process. In this work, adaptive CSP is applied to a target tracking
scenario. A particle filtering implementation using adaptive CSP is developed for tracking
a single target. Simulation results are provided to demonstrate the improvement in SNR
and in tracking a single target by adaptive CSP over non-adaptive CSP and previously

proposed adaptive CSP methods.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In target tracking applications the sensing and processing
of high dimensional signals collected by multiple sensors at
the Nyquist rate places a high computational burden on the
acquisition and processing system of the tracker. Compres-
sive sensing offers the possibility of signal acquisition at a
sub-Nyquist rate while preserving the information con-
tained in the received signal. Sub-Nyquist acquisition is
possible when signals are sparse in a certain basis or dic-
tionary [1-6]. In radar target tracking applications received
signals are indeed sparse due to the presence of only a few
targets in a wide observation field [5]. Therefore, compres-
sive sensing can reduce the size of data needed to be taken
at each time step of the tracking scenario. Compressive
sensing is most often applied using a universal mechanism
that does not need to be adapted to the specific application
considered. Therefore, non-adaptive compressive sensing
has the potential to operate with simple and inexpensive
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hardware [4]. After compressive sensing l;-norm optimiza-
tion [7-11] can be used to identify the sparse elements and
reconstruct the original signal. Adaptive compressive sen-
sing methods also exist [12,13] that are able to improve
signal recovery in noise. In this class of adaptive methods
the compressive sampling process is configured during sig-
nal acquisition.

Instead of using reconstruction, measurements can be
processed directly in their compressed form using compres-
sive sensing and processing (CSP) [14]. CSP simplifies receiver
design and reduces computational complexity by processing
low-dimensional signals. CSP, however, reduces signal to noise
ratio (SNR) [14] and increases ambiguity function surface
sidelobes compared to Nyquist sensing and processing (NSP)
[15], therefore, deteriorating tracking performance [16].

Adaptive compressive sensing and processing (ACSP)
methods were proposed in [16,17,15] that are able to
improve SNR and enhance tracking performance compared
to non-adaptive CSP. Adaptive CSP methods use information
on the structure of signals that will be received at the next
time step of the tracking scenario. The information on the
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structure of signals to be received is derived from available
information on the target state given by the Bayesian
sequential tracking process. This information is embedded
in the sensing matrix used in compressive sensing in a
single step prior to the acquisition of new signals. Therefore,
the adaptive methods proposed differ from other work on
adaptive compressive sensing where the adaptation process
generates rows of the acquisition matrix based on mea-
surements obtained using previously generated rows of the
matrix [12,13,18-21]. The benefits of ACSP were demon-
strated in [17] where it was shown that the identification of
the true sparse elements in the signal when using ACSP was
improved compared to non-adaptive CSP. In addition, in [16]
it was shown that when using adaptation in CSP the SNR
improves compared to the non-adaptive CSP case. In [15] a
novel method to adapt the sensing matrix using tracking
information in ACSP was shown to improve the mainlobe to
maximum sidelobe ratio of the radar ambiguity function
surface.

In this work, the ACSP method proposed in [15] is uti-
lized in a single target tracking application and compared
to other ACSP methods and the non-adaptive CSP method
in terms of SNR and tracking performance in a single tar-
get tracking scenario. Moreover, ACSP is combined with a

Table 1
Notation and acronyms.

particle filtering method based on likelihood sampling
[22] and is capable of data fusion of measurements from
multiple independently reconfigurable radar sensors. The
benefits of using the ACSP method over non-adaptive CSP
is shown in terms of improvement in the SNR and gains in
single target tracking performance.

In Section 2 the target motion and signal acquisition
models are described along with the measurement pro-
cessing method the definition of the SNR. In Section 3
Bayesian target tracking is outlined and the structure of
the received radar signal in a tracking scenario is esti-
mated one step ahead. Moreover, the expected SNR
estimated one step ahead is provided based on the pre-
diction of the structure of the signal to be received. The
expected SNR forms the basis for configuring the ACSP
mechanism. In Section 4, sensing matrix constructions
defining the sensing and processing mechanism are
provided. In Section 5 a practical target tracking algo-
rithm is described using a likelihood particle filter. In
Section 6 simulations of a single target tracking scenario
and a numerical comparison of the expected SNR are
used to compare tracking performance when using
adaptive methods and non-adaptive CSP. A list of
important notation and acronyms is provided in Table 1.

X;: Target state vector at time step k.
P(Xk|Xy_1): Target kinematic distribution.

C,M: Number of compressive and Nyquist rate measurements respectively.
s;: Length M elementary signal with energy & corresponding to target state vector X, according to (2) indexed

by L

Ly Set of signal elements that may appear in the field of view of sensor u with cardinality L, = |Ly|.
W: Size M x L, matrix which contains elements \/iz_s, in its columns having indices [ that belong to set £,.

r;,.: The length M received radar signal acquired at the Nyquist rate by sensor u at time step k.
hy, «: The length C received signal acquired at a sub-Nyquist rate.

@, : The Cx M sensing matrix where C <M.

g;: Length C elementary signal templates representing compressive counterparts of elementary signals s;.
yu,k(f, I): Matched filter statistic for sensor u at time step k.
Ry : The output SNR when acquiring measurements with sensing matrix @, .

Rjp: The SNR of the received signal.

P(Xk|Yi_1): The posterior distribution of the unknown state, using measurements up to time step k—1.
Dux(D: The probability of an element indexed by I appearing in the received waveform at time k can be

expressed

L, Set containing signal elements [ having probability p, () > ¢, where ¢, is a probability threshold.

p(Xklyi): The posterior distribution of the target state.

X: Estimate of the target state.
Ryx: The expected SNR.
S: Size M x L, matrix which contains elements

\}?S’ in its columns having indices I that belong to set £, .

A: Size Ly x L, diagonal matrix with diagonal entries a; = /L, kP, (D, =1, ..., Ly k.

Q: Random C x L, with orthonormal rows.

X1: Realization of the target state vector at time step k where n=1,...,N.
w.: Particle weights representing discrete values of the multitarget posterior at time step k where n=1,...,N.
Ay (h: Normalized likelihood ratio from sensor u at time k for [=1, ..., Ly.

CSP: Compressive sensing and processing.

ACSP: Adaptive compressive sensing and processing.

AWCSP: Adaptive weights compressive sensing and processing.
ADCSP: Adaptive dictionary compressive sensing and processing.
ASCSP: Adaptive sampling compressive sensing and processing.

NSP: Nyquist sensing and processing.
RIP: Restricted isometry property.

CAZAC: Constant amplitude zero autocorrelation waveforms.

SNR: Signal to noise ratio.
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