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a b s t r a c t

Gadzhiev [4] derived expressions for round off error mean and round off error variance when the
rounded variable follows the centered uniform and centered Gaussian distributions. Here, we derive
general expressions for round off error mean and round off error variance when the rounded variable is
any continuous random variable on the real line or any continuous random variable over a finite interval.
Numerical studies are given.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Round off errors arise in many areas of signal processing: wave
digital-filters (Ullrich [14]); fast state-space decimator (Zeman and
Lindgren [19]); polynomial FIR predictors and predictive FIR dif-
ferentiators (Tanskanen and Dimitrov [13]); state-space digital
filters (Lu and Hinamoto [10], Hinamoto et al. [6]); block floating-
point treatment to the LMS algorithm (Mitra et al. [11]); efficient
digital filter structures (Zhao and Li [20]); normal realizations of
digital filters (He et al. [5]); recursive digital frequency synthesis
(Kountouris [8]); digital filters (Li et al. [9]); and so on.

Two important measures of round off errors are their mean and
variance. Gadzhiev [4] derived expressions for these measures by
assuming that the rounded variable say X follows the centered
uniform and centered Gaussian distributions.

The aim of this note is to extend the work of Gadzhiev [4] for
any continuous random variable X defined on either the real line
or a finite interval. The derived expressions for mean and variance
are general and yet simple. They involve only ( )E X , ( )XVar , the
cumulative distribution function of X and another functional.
Simple computer programs have been written by the authors that
implement the derived expressions for any continuous random
variable X. The programs can be obtained from the corresponding
author.

Various distributions have been used to model roundoff errors
in the signal processing area. Some evidence of experiments based
on the Gaussian, uniform, triangular, and trapezoidal distributions
are:

� Press [12] considers “the accumulation of round-off error in a
floating-point digital filter”. He assumes that “the error com-
mitted at each arithmetic operation is an independent random
variable uniformly distributed in ( − − )t t2 , 2 where t is the
length of the mantissa”.

� Barnes et al. [2] consider “roundoff error after fixed-point
multiplication”. They show that “if the multiplier coefficient is
expressed as =a N M/ , where M is a positive integral power of
two and N is an odd integer, then the errors generated by
roundoff after multiplication can generally be modeled as
uniformly distributed, white, and uncorrelated with the signal,
if the signal has sufficiently wide bandwidth and has a dynamic
range that extends over approximately M quantum steps”.

� Ardalan and Alexander [1] present a “fixed-point roundoff error
analysis of the exponentially windowed RLS algorithm” by
assuming that “the input signal is a white Gaussian random
process”.

� Kawarai and Murakami [7] while studying the “roundoff errors
in floating-point arithmetic” and presenting “an optimization
procedure for cascade floating-point digital filters”, apply “the
isosceles trapezoidal distribution to the error analysis of cascade
floating-point digital filters” and obtain “results that are in
extremely close agreement with computer simulation values”.

� Wong [17] considers “the characteristics of the error resulting
when a continuous amplitude signal xn is quantized and then
multiplied by a constant multiplier under fixed-point roundoff
arithmetic”. It is shown that “regardless of the probability
distribution of the input signal xn, it is always possible to add
a suitable dither signal to the input of the system so that both
the quantization error and the roundoff error are uniformly
distributed, white, and mutually uncorrelated”.

� Vladimirov and Diamond [15] show the validity of the uniform
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distribution for fixed-point roundoff noise “in digital imple-
mentation of linear systems arising due to overflow, quantiza-
tion of coefficients and input signals, and arithmetical errors”.

� Csordas et al. [3] consider dithering “a known method for
increasing the precision of analog-to-digital conversion”. They
investigate and compare the effects “on bias and variance using
uniform and triangularly distributed digital dithers”.

� Yu and Lim [18] present “an analysis for the roundoff noise of
signal represented using a limited number of signed power-of-
two terms”. Their analysis estimates “roundoff errors for Gaus-
sian distributed inputs”.

In each of these experiments, the derived formulas for the mean
and variance can be used to provide basic measures of roundoff
error.

Furthermore, the excellent book by Widrow and Kollar [16]
mentions the following: the Gaussian distribution, uniform dis-
tribution, the triangular distribution, the sinusoidal distribution,
the convolution of triangular and uniform distributions and the
convolution of triangular and triangular distributions can be used
as models for dithers (see pages 497, 500, 501, 502, 503); the
Gaussian, uniform and triangular distributions can be used as
models for digital dithers (see pages 689–694); the Gaussian dis-
tribution can be used as models for quantizer input (see pages 84,
85, 106, 107, 123, 124, 125, 206, 207, 225–254, 411). In these cases
too, the derived formulas can be used to provide basic measures of
the associated roundoff error.

The contents of this note are organized as follows: four
theorems deriving expressions for the mean and variance of

− ( )X Xfloor and ( )− +X Xfloor 1
2

are given in Section 2; their

proofs are given in the appendix; two numerical studies showing
the use of the theorems and checking correctness of their deri-
vations are given in Section 3.

2. Main results

Our main results are Theorems 1–4. Theorems 1 and 2 derive

the mean and variance of − ( )X Xfloor and ( )− +X Xfloor 1
2

when

X is a continuous random variable on the domain ( − ∞ ∞), .
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Note that ( )⁎F y is the cdf of = +Y X 1
2
at y and that ( )⁎M y is the M

function of = +Y X 1
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at y.

Theorem 1. Let X be a continuous random variable on the domain
( − ∞ ∞), with pdf f and cdf F. Then
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Theorem 2. Let X be a continuous random variable on the domain
( − ∞ ∞), with pdf f and cdf F. Then
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Theorem 3. Let X be a continuous random variable on the domain
( )a b, for −∞ < < < ∞a b with pdf f and cdf F. Then
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where = ( )p afloor and = ( )q bceiling .

Theorem 4. Let X be a continuous random variable on the domain
( )a b, for −∞ < < < ∞a b with pdf f and cdf F. Then
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