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magnitudes and number of sensors when the modal space is complete and is robust
against modal truncation. It is shown that improvements over a sensitivity solution are
significant when the relation between the eigenvalue and the perturbation magnitude is
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1. Introduction

Results from output only modal identification cannot be used to establish input-output relations because the
information to properly scale the mode shapes is unavailable. Since a number of applications in experimental dynamics
and diagnostics are based on input-output maps, procedures to determine the modal scaling constants for output only
settings are of practical interest. A strategy that has received notable attention computes these constants by equating the
eigenvalue sensitivity (with respect to a given perturbation) to an experimental estimate, the simplest being a finite
difference approximation from the results of two tests [1]. In theory the type of perturbation is arbitrary but in practice the
addition of masses is typically easiest to implement and has thus been most commonly considered [2-7].

Scaling constants estimated using the mass perturbation scheme are random variables with a bias and a variance that
depend on the perturbation magnitude and on the specifics of how the information is used to extract the constants.
For conciseness in the discussion we introduce some notation from the outset, namely, we parameterize the mass
perturbation as AM = M, where f is a scalar and note that as g— 0 the information vanishes and thus ¢2 — oo, where ¢ is
the variance of the scaling constant estimate. It is evident, therefore, that to realize a reasonable variance sufficiently large
perturbations are needed. As j gets larger, however, the bias of a finite difference estimate of the sensitivity tends to increase
because the relation between the eigenvalue 1 and the perturbation magnitude g is generally nonlinear. Two different paths
to minimize the bias issue can be pursued. The first one is to select distributions of the perturbation that minimize
nonlinearity in A() (or in a predetermined function of this function) [3,4] and the second is to formulate the problem in such
a way that the solution depends on the total changes in the eigenvalues, instead of the derivatives. Belonging to the first
alternative one can mention the use of distributions M; that more or less mimic the actual mass, as these lead to quasi-linear
relations between the inverse of the (undamped) eigenvalue and the perturbation magnitude. The limiting case, however,
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being redundant since in this instance the modes have to be measured “everywhere” and knowledge of the mass
distribution allows normalization using the orthogonality relationship. Optimization of the positioning of a few masses to
reduce nonlinearity in (some) of the A(p) relations is analytically feasible but this requires use of a model and is thus
incompatible with the data-driven constraints that apply to the present problem.

Formulations that work with the total changes in the eigenvalues (instead of the derivatives) do not impose constraints
on the number, or on the spatial distribution of the perturbation, and this is the framework pursued in this paper. At first
glance it may appear that working with total changes would remove the perturbation magnitude bias altogether but this is
not generally the case because finite perturbations lead to modal coupling and bias enters the problem through the modally
truncated space. A formulation for the scaling constants based on total eigenvalue changes, however, can offer significant
reductions gains over a sensitivity scheme because the bias in this case (as shall be shown) is only weakly dependent on g.
The first formulation that used total changes to estimate the scaling constants traced the nonlinear A(p) relation using
sensitivities for a set of assumed constants and obtained the solution by minimizing discrepancy between predictions and
identified results [2]. Albeit straightforward conceptually, the outlined optimization framework is computationally
cumbersome compared to a direct solution and, perhaps for this reason, has not received much attention. Methods that
offer direct solutions include the Projection Approach (PA) [5], derived for the normal mode model on the premise that the
perturbed eigenvectors lay on the basis of the unperturbed modes and the Receptance Based Normalization technique (RBN)
[7], where the constants are obtained from an over-determined linear system of equations.

Implicit throughout the previous discussions is the fact that the modes that are to be normalized are the real modes of
the normal mode model. While the normal mode model is sufficiently accurate in the large majority of cases, there are
instances, typically due to the existence of a set of modes with small eigenvalue gaps (see Appendix A) where irreducible
eigenvector complexity is significant and the more general first order modal model must be used to avoid undue error [8].
This paper presents an extension of the RBN scheme to the normalization of the complex eigenvectors of the first order
formulation. The paper presents the theory, examines performance in a stochastic setting and clarifies the conditions were
the gains with respect to a sensitivity solution are important. The contrast between the complex form, designated as CRBN,
and the approach that applies in the case of normal modes is highlighted in Appendix B for convenience.

2. Preliminaries

Consider an arbitrarily viscously damped linear time invariant model, accepting finite dimensionality the equations of
dynamic equilibrium can be written as

Mg(®)+Cq(t)+Kq(t) = f(t) M

where M, C,K e RV are the mass damping and stiffness matrices, N is the number of degree of freedom and f(t) are the
applied loads. Taking a Laplace transform writes

[Ms? + Cs+K]q(s) =f(s) )

Solutions are possible for f{s)=0 if the matrix in the parenthesis is rank deficient. The values of s for which this matrix
loses rank are the poles, or complex eigenvalues, 4, and the vectors in the null space are the latent vectors y [9,10]. It is
customary to refer to the latent vectors as complex eigenvectors, or simply eigenvector. For any value of s, other than a pole,
the matrix in Eq. (2) can be inverted and one has

q(s) = G(s)f () 3

where G(s) is known as the Receptance. The Receptance can be expressed as [11]

Go= 3 1 4@
=1 S—4

taking

Kj=\/pj (5)
and defining the normalized complex eigenvectors as

@ = Kjy; (6)
the Receptance writes

2N q,jq,.T
G(s)= j; S_—i] (7)

For the eigenvectors in Eq. (7) one has, among other relations [10]

OTCO+AD' MDD+ D" MdA =1 (8)
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