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a b s t r a c t

A new robust adaptive beamforming technique is proposed in this study to address per-
formance degradation of adaptive beamforming methods in the presence of steering
vector mismatch. Actual steering vector of desired signal is estimated by solving a convex
optimization problem with the objective constructed by minimizing the sum of estimated
desired steering vector projections onto noise eigenvectors. The beamformer performs
well at high signal-to-noise ratio (SNR) with the orthogonality between presumed desired
steering vector and mismatch vector as a single constraint. Feasibility and necessity of
adding an additional quadratic constraint are verified through detailed performance
analysis with random matrix theory, improving the performance at low SNR. The para-
meter determination approach is provided to allow the proposed beamformer to function
properly in practical situations. Both the theoretical analysis and simulation results
demonstrate the proposed method is robust against any steering vector mismatch.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Adaptive beamforming has been widely applied in
wireless communications, radar, astronomy, medical ima-
ging, and other fields [1,2]. Conventional adaptive beam-
forming methods suppress interference effectively and
maximize the output signal-to-interference-plus-noise
ratio (SINR) with exact knowledge of desired signal
steering vector and interference-plus-noise covariance
matrix (INCM). Precise knowledge is difficult or impossible
to obtain in practical situations and the presence of
steering vector mismatch, including look direction error
and antenna array geometry perturbations, results in
severe performance degradation of adaptive beamformers,
thus many approaches have been proposed for improving
robustness against steering vector mismatch.

Diagonal loading [3] is a prevalent robust adaptive tech-
nique. However, the selection method for optimal diagonal
loading factor remains ambiguous. Robust Capon beamformer
[4] can be regarded as a diagonal loading method with per-
formance proven to be equivalent to the worst-case perfor-
mance optimization method [5]. Through maximizing
beamformer output power, an advanced beamformer [6] is
proposed to estimate desired signal steering vector based on
angular sector where desired signal is located. A method
utilizing an orthogonal interference-plus-noise subspace
projection matrix is introduced in [7] and the dimension of
estimated interference-plus-noise subspace is determined by
an energy percentage parameter while no clear selection
guideline is provided. Jiang et al. proposed a class of beam-
formers exploiting non-Gaussianity of the signals [8–10],
where minimum dispersion criterion is adopted in place of
conventional minimum variance criterion.

INCM reconstruction [11,12] has been recently intro-
duced as a new beamformer design principle. The INCM is
reconstructed based on the Capon spatial spectrum in [11]
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and on the interference direction-of-arrival (DOA) and
power estimation of interference and noise in [12]. Both
algorithms perform perfectly for ideal antenna array;
however, the presence of array perturbations (i.e., mutual
coupling, sensor gain, and phase and sensor position
errors) leads to severe performance degradation rendering
the two approaches not suitable for practical situations.
The conclusion is also applicable for beamformer in [13]
where both interference-plus-noise covariance matrix and
desired signal-plus-noise covariance matrix are
constructed.

A new robust adaptive beamforming method is pro-
posed in this study that offers robustness against steering
vector mismatch with the beamformer formulated as an
optimization problem. The frequently utilized objective
function which maximizes beamformer output power is
replaced in the study by minimizing the sum of estimated
desired steering vector projections onto noise eigenvec-
tors. Constraints of the optimization problem are con-
structed with imprecise knowledge of antenna array geo-
metry and angular sector where the desired signal is
located. The optimization problem is convex and can be
easily solved utilizing convex optimization theory.

The paper is organized as follows: Section 2 introduces
background material with the new beamformer proposed
and analyzed in Section 3. Section 4 compares perfor-
mance of the proposed method with existing beamformers
and Section 5 draws the conclusions.

2. The signal model

A linear antenna array with M omni-directional sensors
is considered. The output of narrowband beamformer at
time instant k is given by

yðkÞ ¼wHxðkÞ; ð1Þ
wherew is the weight vector of the antenna array and ðU ÞH
represents the Hermitian transpose. The received signal
xðkÞ can be written as

xðkÞ ¼ sðkÞþ iðkÞþnðkÞ ¼ s0ðkÞa0þ iðkÞþnðkÞ; ð2Þ
where a0 is the actual desired signal steering vector, s0ðkÞ
is waveform of desired signal, sðkÞ, iðkÞ, and nðkÞ represent
desired signal, interference, and noise, respectively.
Desired signal and interference are assumed to be statis-
tically independent of each other. Additive noise is mod-
eled as a spatially and temporally independent complex
zero-mean Gaussian process with identical variances in
each array sensor.

The theoretical covariance matrix Rx is expressed as

Rx ¼ E½xðkÞxHðkÞ� ¼ σ20a0a
H
0 þRiþn; ð3Þ

where EfUg denotes statistical expectation, σ20 is the
desired signal power and Riþn ¼ E iðkÞþnðkÞð Þ iðkÞð�
þnðkÞÞHg is interference-plus-noise covariance matrix.
Output SINR corresponding to specific weight vec-
tor w can be formulated as

SINR¼ σ20 wHa0
�� ��2

wHRiþnw
: ð4Þ

and the maximization of (4) results in the minimum var-
iance distortionless response (MVDR) problem

min
w

wHRiþnw

s:t: wHa0 ¼ 1: ð5Þ
Solution of optimization problem (5) is

wopt ¼
R�1
iþna0

aH0R
�1
iþna0

: ð6Þ

Riþn and a0 cannot be obtained in practical applica-
tions, therefore, sample covariance matrix R̂¼ 1=N

PN
k ¼ 1 x

ðkÞxHðkÞ with N training snapshots and presumed steering
vector a are exploited, respectively. (6) is transformed to
sample matrix inversion (SMI) adaptive beamformer

wSMI ¼
R̂

�1
a

aHR̂
�1

a
: ð7Þ

Limited training snapshots and imperfect knowledge of
desired steering vector are known to result in performance
degradation of the beamformer (7).

3. The proposed algorithm

Performance of the beamformer will improve with
more accurate estimation of Rx or a0. A new robust
adaptive beamforming method to estimate actual steering
vector of desired signal is proposed in this section.

3.1. Basic beamformer

The theoretical covariance matrix Rx and sample cov-
ariance matrix R̂ can be decomposed as

Rx ¼USΣSU
H
S þUNΣNUH

N ¼
XM�1

i ¼ 0

γieie
H
i ;

R̂ ¼
XM�1

i ¼ 0

γ̂ iê iê
H
i ; ð8Þ

where γ0Z⋯ZγD ¼⋯¼ γM�1 are eigenvalues of Rx and ei
fwhereare corresponding eigenvectors, γ̂i are eigenvalues
of R̂ in descending order and êi are corresponding eigen-
vectors, D denotes the number of signal impinging on the
array, US ¼ ½e0;⋯; eD�1� spans the signal subspace, UN ¼
½eD;⋯; eM�1� spans the noise subspace, ΣS and ΣN repre-
sent eigenvalue matrices of signal subspace and noise
subspace, respectively.

Eigenvectors corresponding to large projections of
desired steering vector a0 onto the eigenvector êi can be
applied to construct space considered to be the same as
signal subspace [14]. Eigenvectors corresponding to the
small projections can be utilized to construct the new
noise subspace. Under the assumption that the mismatch
between a0 and a is not too large, a can be utilized to
replace a0 with the above conclusions approximately
remaining. The value of projections is given by

p ið Þ ¼ êHi a
��� ��� i¼ 0;1;⋯;M�1: ð9Þ
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