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a b s t r a c t

Distributed signal processing algorithms have become a hot topic during the past years.
One class of algorithms that have received special attention are particles filters (PFs).
However, most distributed PFs involve various heuristic or simplifying approximations
and, as a consequence, classical convergence theorems for standard PFs do not hold for
their distributed counterparts. In this paper, we analyze a distributed PF based on the non-
proportional weight-allocation scheme of Bolic et al (2005) and prove rigorously that,
under certain stability assumptions, its asymptotic convergence is guaranteed uniformly
over time, in such a way that approximation errors can be kept bounded with a fixed
computational budget. To illustrate the theoretical findings, we carry out computer
simulations for a target tracking problem. The numerical results show that the distributed
PF has a negligible performance loss (compared to a centralized filter) for this problem
and enable us to empirically validate the key assumptions of the analysis.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Distributed signal processing algorithms have become a
hot topic during the past years, propelled by fast techno-
logical developments in the fields of parallel computing,
on one hand, and wireless sensor networks (WSNs), on the
other. In parallel computing, algorithms are optimized to
run fast on a set of concurrent processors (e.g., in a gra-
phics processing unit (GPU) [39]), while signal processing
methods for WSNs are designed for their implementation
over a collection of low-power nodes that communicate
wirelessly and share the processing tasks [36]. Popular
techniques in the WSN arena include consensus-based
estimators [18,27,26], diffusion-based adaptive algo-
rithms [30,6,7] and distributed stochastic filters, including

Kalman filters [38,37] and particle filters (PFs)
[24,28,15,16]. While consensus and diffusion algorithms
require many iterations of message passing for con-
vergence, PFs are a priori better suited for online estima-
tion and prediction tasks. Unfortunately, most distributed
PFs (DPFs) rely on simplifying approximations and their
convergence cannot be guaranteed by the classical theo-
rems in [9,13,3]. One exception is the Markov chain dis-
tributed particle filter (MCDPF), for which analytical
results exist [28]. However, the MCDPF converges asymp-
totically as sets of samples and weights are retransmitted
repeatedly over the network according to a random
scheme. From this point of view, it is as communication-
intensive as consensus algorithms and, therefore, less
appropriate for online processing compared to
classical PFs.

The implementation of PFs on parallel computing sys-
tems has received considerable attention since these
methods were originally proposed in [19]. The efficient
implementation of PFs on parallel devices such as GPUs
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and multi-core CPUs is not as straightforward as it seems a
priori because these Monte Carlo algorithms involve a
resampling step which is inherently hard to parallelize.
This issue is directly addressed in [5], where two parallel
implementations of the resampling step are proposed.
While the approach of [5] is sound, the authors focus on
implementation issues and no proof of convergence of the
resulting PFs is provided. Only very recently, a number of
authors have proposed distributed particle filtering
schemes with provable convergence [41,40]. These meth-
ods have a fairly broad scope (the methodology in [41] can
actually be seen as a generalization of the techniques in
[5]) yet they appear to be less suitable for practical
implementations under communications or computing
power constraints, as they involve considerable paralleli-
zation overhead [40] or depend on the centralized com-
putation of certain statistics that involve the whole set of
particles in the filter [41].

The goal of this paper is to provide a rigorous proof of
convergence for a DPF that relies on the distributed
resampling with non-proportional weight-allocation
scheme of [5] (later adapted for implementation over
WSNs in [36]). Under assumptions regarding the stability
of the state–space model underlying the PF, we prove that
this algorithm converges asymptotically (as the number of
particles generated by the filter increases) and uniformly
over time. Time-uniform convergence implies that the
estimation errors stay bounded without having to increase
the computational effort of the filter over time. We provide
explicit convergence rates for the DPF and discuss the
implications of this result and the assumptions on which
the analysis is based. The theoretical investigation is
complemented by computer simulations of an indoor tar-
get tracking problem. For this specific system, we first
show that the performance of the centralized and dis-
tributed PFs is very similar and then proceed to validate
numerically a key assumption used in the analysis, related
to the degree of cooperation among processing elements
in the distributed computing system on which the algo-
rithm is run.

The rest of the paper is organized as follows. In Section 2
we describe the DPF of interest. In Section 3 we prove a
uniform convergence result for this filter and discuss the
implications of such result. Computer simulations are pre-
sented in Section 4 and, finally, Section 5 is devoted to the
conclusions.

2. A distributed particle filtering algorithm

2.1. State space systems and the standard particle filter

The stochastic filtering problem consists in tracking the
posterior probability distribution of the state variables of a
random dynamic system. Often, the problem is restricted
to the (broad) class of Markov state space systems with
conditionally independent observations. Let fXngnZ0

denote the discrete-time random sequence of the system
state variables, taking values on the dx-dimensional set
XDRdx , and let fYngnZ1 denote the corresponding
sequence of observations, taking values on Rdy . The

systems of interest are modeled by triplets of the form
τ0ðdxÞ; τnðdxjxn�1Þ; gnðynjxnÞ
� �

nZ1, where τ0 is the
prior probability measure associated to the random vari-
able (r.v.) X0, τnðdxjxn�1Þ is a Markov kernel that deter-
mines the probability distribution of Xn conditional on
Xn�1 ¼ xn�1, and gnðynjxnÞ is the conditional probability
density function (pdf) of the random observation Yn, given
the state Xn ¼ xn, with respect to (w.r.t.) the Lebesgue
measure. The latter is most often used as the likelihood of
Xn ¼ xn given the observation Yn ¼ yn. We write gn as a
function of xn explicitly, namely gynn ðxnÞ9gnðynjxnÞ, to
emphasize this fact.

The goal in the stochastic filtering problem is to
sequentially compute the posterior probability measures
of Xn given the observations Y1:n ¼ y1:n, denoted πnðdxÞ, for
n¼ 0;1;… (note that π0 ¼ τ0). Except for a few particular
cases, e.g., the Kalman [25,2] and Beneš [3] filters, πn
cannot be computed exactly and numerical approxima-
tions are pursued instead. PFs are recursive Monte Carlo
algorithms that generate random discrete approximations
of the probability measures fπn;nZ1g [9,13,3]. At time n a
typical particle filtering algorithm produces a set of N
random samples (often termed particles) and associated
importance weights, Ωn ¼ fxðiÞn ;wðiÞ�

n gNi ¼ 1 with Wn ¼
P

N
i ¼ 1w

ðiÞ�
n , and approximate πn by the way of the random

probability measure πNn ¼ ð1=WnÞ
PN

i ¼ 1 w
ðiÞ�
n δxðiÞn

, where δx
denotes the Dirac (unit) delta measure located at x.

It is common to analyze the convergence of PFs in
terms of the approximation of integrals w.r.t. πn
[14,9,3,13,33]. To be specific, let f :X-R be a real function
integrable w.r.t. πn. Then we denote

ðf ; πnÞ9
Z

f ðxÞπnðdxÞ

and approximate the latter integral (generally intractable)
as

f ; πnð Þ � f ; πNn
� �¼ Z

f xð ÞπNn dxð Þ ¼ 1
Wn

XN
i ¼ 1

wðiÞ�
n f xðiÞn
� �

:

2.2. A distributed particle filter

We describe a PF based on the distributed resampling
with non-proportional allocation (DRNA) scheme of
[5, Section IV.A.3] (see also [32,4,36]). Assume that the set
of weighted particles

Ωn ¼ fxðiÞn ;wðiÞ�
n gNi ¼ 1

can be split into M disjoint sets,

Ωm
n ¼ fxðm;kÞ

n ;wðm;kÞ�
n gKk ¼ 1; m¼ 1;…;M; such that

Ωn ¼ [M
m ¼ 1 Ω

m
n ;each of them assigned to an independent

processing element (PE). The total number of particles is
N¼MK, whereM is the number of PEs and K is the number
of particles per PE. At the m-th PE, m¼ 1;…;M, we addi-
tionally keep track of the aggregated weight

W ðmÞ�
n ¼

XK
k ¼ 1

wðm;kÞ�
n

for that PE.
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