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Modeling time and space series in various areas of science and engineering require the
values of parameters of interest to be estimated from the observed data. It is desirable to
analyze the performance of estimators in an elegant manner without the need for
extensive simulations and/or experiments. Among various performance measures, var-
iance is the most basic one for unbiased estimators. In this paper, we focus on the esti-
mator based on the #,-norm minimization in the presence of zero-mean symmetric non-
Gaussian noise. Four representative noise models, namely, a-stable, generalized Gaussian,
Student's t and Gaussian mixture processes, are investigated, and the corresponding
variance expressions are derived for linear and nonlinear parameter estimation problems
at p> 1. The optimal choice of p for different noise environments is studied, where the
global optimality and sensitivity analyses are also provided. The developed formulas are
verified by computer simulations and are compared with the Cramér-Rao lower bound.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Parameter estimation [1] is a common task required in
many areas of science and engineering such as radar,
sonar, speech, image analysis, biomedicine, communica-
tions and seismology. It refers to accurately finding the
values of parameters of interest from the observed data
which consist of two components, viz., signal and noise.
Typically, a deterministic model is adopted for the signal
while a random process model is employed for the noise.
Among numerous estimators developed in the literature,
least squares (LS) and maximum likelihood (ML) methods
have been widely used.

To assess the quality of an estimator, two fundamental
performance measures in the aspect of accuracy are bias
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and mean square error (MSE). To calculate bias and MSE,
approaches such as Taylor series expansion (TSE) of the
estimates [2] or TSE on the error function [3] can be used.
Although we have only demonstrated the usefulness of the
formulas in the presence of Gaussian noise in [4], it is
found that the latter has more applicability and may be
simpler to derive particularly for nonlinear parameter
estimation problems. Despite its theoretical and compu-
tational convenience, it is generally understood that the
validity of the Gaussian distribution is at best approximate
in reality. In fact, the occurrence of non-Gaussian noise has
been reported in many fields [5,6]. Note that some non-
Gaussian models correspond to impulsive noise. In this
case, the LS approach which is based on #,-norm mini-
mization of errors, fails to provide reliable parameter
estimation, since its performance is very sensitive to out-
liers. The ML estimator may also not be a proper choice. In
particular, it is hard to implement for the process whose
probability density function (PDF) has a complicated ana-
lytical form or lacks an analytical expression. One strategy
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is to detect and discard the suspicious observations but it
may not be feasible for large data sets or complex appli-
cations [5].

Alternatively, M-estimator [7], which is based on robust
statistics, can resist outliers without preprocessing the
data. Its key idea is to replace the squared residuals in the
LS methodology by another function which emphasizes
large samples less than the square. The least #p-norm
estimator with p <2 belongs to the M-estimator family,
which is commonly solved by iterative techniques such as
the iteratively reweighted least squares (IRLS), Levenberg-
Marquardt (LM) and subgradient methods [8-10].

As a follow-up to [4], we study the performance of the
least ¢p-norm estimator for parameter estimation in
additive non-Gaussian noise in this work. Four repre-
sentative models, namely, symmetric a-stable (SaS) [11],
generalized Gaussian (GG) [12], Student's t [13] and
Gaussian mixture (GM) [14] processes, are investigated.
For simplicity but without loss of generality, all noise
models are assumed zero-mean and symmetrically dis-
tributed, implying that the least #,-norm estimator is
unbiased and we only analyze the variance formulas. Note
that this study assumes that the availability of the noise
statistic information, i.e., PDF and density parameters.
Therefore, in the case of unknown noise statistics [15,16],
they should be estimated [17,18] prior to applying our
results. The logarithm moment method [17] can be
employed for density parameter estimation from the
available noise-only samples. Even when we know nothing
about the noise statistics, the GM model can be utilized to
approximate the impulsive noise [18]. The parameters of
the GM process, that is, numbers of components and their
variances, can be adjusted adaptively based on the noise-
only observations.

The rest of this paper is organized as follows. In Section 2,
we briefly present the bias and MSE formulas based on TSE
on the estimator cost function, and then the least £,-norm
estimator. The SaS, GG, Student's t and GM models, are then
reviewed in Section 3. Linear and nonlinear signal models
are studied with illustrative examples in Sections 4 and 5,
respectively. Selection of p for different non-Gaussian noise
models which result in minimum variance as well as global
optimality and sensitivity analysis are examined in Section 6.
In Section 7, computer simulation results are provided to
validate the derived variance formulas and contrast with the
Cramér-Rao lower bound (CRLB). Finally, conclusions are
drawn in Section 8.

2. Variance formula and least #,-norm estimator

We start with a general signal model:

y=8gX)+q, M
where y =[y; - yyI" € RN is the observation vector with T
being the transpose operator, g(-) is a known function,
X=[x; - Xxu]" € RM is the deterministic parameter vector
of interest with M < N and q =[q; - qy]" € RN denotes the
additive random noise component with zero location
parameter. The task of parameter estimation is to find x
fromy.

A common approach for estimating X is to design a cost
function J(x) which is constructed fromy, and the estimate
of X, denoted by X, is computed by minimizing J(x):

X = arg min/(x). (2)
Equivalently,
V(%)) =0y, 3

where V(J(X) denotes the gradient vector of J(X) at X=X
and Oy € RN is a column vector with all zeros. In this study,
we consider a general class of estimators such that J(x) is
twice differentiable. When X is located at a reasonable
proximity to X, which is valid when the noise is small
enough and/or observation number is sufficiently large,
the truncated TSE of V(J(X)) around X is

V(X)) ~ V(X)) +HJX)(X —X), “

where H(J(X)) is the Hessian matrix. Assuming that H(J(x))
is smooth enough to have H(J(x)) ~ E{H(J(X))}, (4) can be
utilized to compute the bias and MSE of X:

bias(X) = E{X} —x~ — (E{H(J(X))}) " 'E{V(X))}, (5)

M(%) = E{ (X —X) (X —x)"}

~ (E{H(Jx))}) "E{vJx)V )} (E{HJx))}) ",
(6)

where E denotes the expectation operator and (-)~! is the
matrix inverse. The MSE of X,,, m=1, ..., M, is given by the
(m,m) entry of M(X). Note that the expressions in (5) and
(6) are exact when J(x) is a quadratic function. Further-
more, the validity of (5) and (6) may not relate to the
parameter dimension, namely, M, but depends on whether
x is linear in the observation vector or not. It is because
nonlinear estimators nearly always exhibit the threshold
effect [1].

For an unbiased estimator where bias(X) = 0y, the MSE
is in fact the variance. Then the covariance matrix for X,
denoted by C(X), is approximated by (6) while the variance
of X, denoted by var(X,,), is provided by the (m, m) entry
of C(X).

Denote g(X) = [g;(X) --- gy(X)]". A typical choice for J(x)
is the LS cost function:

N
J0=">" -2, ©)

n=1
which corresponds to #;-norm minimization. It is well
known that the LS solution is equivalent to the ML esti-
mate when q is a zero-mean white Gaussian process. In
fact, (5) and (6) have been verified in [4] for LS-based
parameter estimation in the presence of white Gaussian
noise. Nevertheless, when the noise is non-Gaussian dis-
tributed, particularly if q is impulsive, unreliable para-
meter estimation will result since the performance of the
#>-norm minimizer is very sensitive to outliers. To achieve
robust estimation, #Zp-norm minimization with p<2 is
widely used since it is less sensitive to outliers than the
square function. In this work, we focus on the #,-norm
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