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a b s t r a c t

This paper addresses the problem of robust target localization in distributed multiple-
input multiple-output (MIMO) radar using possibly outlier range measurements. To
achieve robustness against outliers, we construct an objective function for MIMO target
localization via the maximum correntropy criterion. To deal with such a nonconvex and
nonlinear function, we apply a half-quadratic optimization technique to determine the
target position and auxiliary variables alternately. Especially, we derive a semidefinite
relaxation formulation for the aforementioned position determination step. The robust
performance of the developed approach is demonstrated by comparing with several
conventional localization methods via computer simulation.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Multiple-input multiple-output (MIMO) radar [1–3] has
received considerable attention because it can achieve
significantly enhanced target detection and parameter
estimation performance through utilizing the waveform or
spatial diversity. In this paper, we address the target
localization problem in distributed MIMO radar.

Distributed MIMO radar localization methods can be
classified into two categories, namely, direct and indirect.
The former, including the maximum likelihood (ML) [4,5]
and sparse recovery [6] methods, requires two-

dimensional search. Whereas the latter approach first
estimates the ranges, which correspond to the sum of
transmitter-to-target and target-to-receiver distances,
referred to range-sum, from the received signals. The tar-
get position is then determined using a set of elliptic
equations constructed from the range estimates. Espe-
cially, among the indirect methods, the ML technique has
also been exploited to find the location in an iterative
manner with an initial position estimate [4,7]. Note that
the nonconvex ML formulation can be approximated as a
convex program [8]. In addition, the elliptic measurements
can be converted to linear equations [9,10] from which
global solution is obtained via the linear least squares (LLS)
technique. It is worth pointing out that our addressed
problem belongs to multilateration based target localiza-
tion which employs multiple transmitters and/or multiple
receivers to obtain the range, range-difference or range-
sum estimates determined from the time-of-arrival
[11,12], received signal strength [13,14], time-difference-

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/sigpro

Signal Processing

http://dx.doi.org/10.1016/j.sigpro.2015.11.004
0165-1684/& 2015 Elsevier B.V. All rights reserved.

n Correspondence to: Room 467, School of Electronics and Info-
rmation, NorthWestern Polytechnical University of China, China. Tel: þ86
18700999055.

E-mail addresses: heery_2004@hotmail.com (J. Liang),
hcso@ee.cityu.edu.hk (H.C. So).

1 EURASIP Member.

Signal Processing 122 (2016) 33–38

www.sciencedirect.com/science/journal/01651684
www.elsevier.com/locate/sigpro
http://dx.doi.org/10.1016/j.sigpro.2015.11.004
http://dx.doi.org/10.1016/j.sigpro.2015.11.004
http://dx.doi.org/10.1016/j.sigpro.2015.11.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2015.11.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2015.11.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2015.11.004&domain=pdf
mailto:heery_2004@hotmail.com
mailto:hcso@ee.cityu.edu.hk
http://dx.doi.org/10.1016/j.sigpro.2015.11.004


of-arrival (TDOA) [15,17] or time-sum-of-arrival (TSOA)
[7–10] measurements.

In the MIMO radar systems, there are multiple transmit
waveforms, which interfere with each other apart from the
interferences. In particular, in the low signal-to-
interference-plus-noise ratio (SINR) environment, the
obtained range measurements in distributed MIMO radar
systems via the matched filter may not be accurate. In
addition, the presence of non-line-of-sight (NLOS) [18,19]
propagation is common in practical applications. Either
low SINR or NLOS observations can result in extreme
values corresponding to outlier measurements, making
the MIMO radar localization problem more complicated.

Motivated by the robustness of correntropy for outlier
rejection [20], we develop a distributed MIMO radar target
localization method using the maximum correntropy cri-
terion (MCC), which can handle outlier range measure-
ments. First, we introduce MCC [20] based on the con-
ventional ML formulation and construct a new objective
function for target localization. Furthermore, the half-
quadratic optimization technique [21,22] is applied to
cope with the corresponding nonconvex and nonlinear
function, which results in determining the target position
and auxiliary variables alternately. Finally, the semidefinite
relaxation (SDR) [23] formulation for position estimation
is devised. Note that our work is different from [4–17]
which assume the absence of NLOS propagation. In parti-
cular, although [8] and we consider range-sum based
localization, the former employs convex optimization and
only one receiver is allowed, while the latter utilizes the
nonconvex half-quadratic optimization technique with
multiple transmitters and receivers. On the other hand,
TDOA based positioning is addressed in [16,17] but our
focus is to exploit TSOA measurements.

The rest of this paper is organized as follows. The
problem of target localization using distributed MIMO
radar is formulated in Section 2. The proposed localization
method is developed in Section 3. Numerical examples are
included in Section 4. Finally, conclusions are drawn in
Section 5.

Notation: Vectors and matrices are denoted by boldface
lowercase and uppercase letters, respectively. The E½:�,
J � J2, ð�ÞT , trace½:�, and rank½:� stand for the expectation,
Frobenius norm, transpose, trace, and rank operators,
respectively. A n� n diagonal matrix with diagonal entries
a1;…; an, is denoted by diagða1;…; anÞ. The 0m�n, 1n, and In
represent the m� n zero matrix, n� 1 vector of 1 and n�
n identity matrix, respectively. We use A≽0m�n to indicate
that AARm�n is positive semidefinite.

2. Background

2.1. Problem formulation

Consider a two-dimensional MIMO radar system equip-
ped with M transmitters and N receivers and a target that is
in the region of interest. Denote tm ¼ ½xtm ytm�T , rn ¼ ½xrn yrn�T ,
and θ¼ ½xθ yθ�T as the positions of the mth transmitter, the
nth receiver, and the target, respectively. In this study, we
assume that the TSOAs have been estimated by a

preprocessing step. Multiplying them by the propagation
speed yields the range-sum estimates. Let rm;n be the esti-
mate corresponding to the sum of the distance between the
mth transmitter and the target and the distance between the
target and the nth receiver, it is modeled as:

rm;n ¼ Jθ�tm Jþ Jθ�rn Jþqm;n; ð1Þ
where qm;n ¼ vm;nþom;n consists of two components,
namely, vm;n is the zero-mean additive white Gaussian noise
and om;n is the possible outlier. That is, fom;n ¼ 0gM;N

m ¼ 1;n ¼ 1
corresponds to the case with no outliers. The task is to
estimate θ from rm;n, m¼ 1;2;…;M, n¼ 1;2;…;N.

2.2. Maximum correntropy criterion

The concept of correntropy [20] in information theo-
retic learning is related to Renyi's quadratic entropy using
Parzen windowing, and is used for assessing similarity of
two random variables in a local manner and by the kernel
function. Especially, the cross correntropy of two arbitrary
scalar random variables X and Y is defined as [20]:

VσðX;YÞ ¼ E½kσðX�YÞ�; ð2Þ
where

kσ X�Yð Þ ¼ exp �ðX�YÞ2
2σ2

 !
; ð3Þ

Here, σ is called the kernel bandwidth, which is a user-
defined parameter.

In practice, the joint probability density function of
ðX;YÞ may be unknown and only a finite number of sam-
ples fXi;YigNi ¼ 1 are available. Thus, the sample estimator of
cross correntropy [20] is given by:

V̂ N;σ X;Yð Þ ¼ 1
N

XN
i ¼ 1

kσ Xi�Yið Þ: ð4Þ

According to [20], the cross correntropy of the error
between Xi and Yi corresponding to the MCC, which in a
general framework, bears a close relationship with the
well-known M-estimation, that is, a generalized ML
methodology. It is also shown in [24] that the MCC results
in a smoothed maximum a posteriori estimator. Note that
MCC has been successfully applied in nonlinear and non-
Gaussian signal processing, especially in the impulsive
noise environment. Especially, the adjustable window or
kernel bandwidth provides an effective mechanism to
eliminate the adverse effect of outliers.

3. Proposed algorithm

When there is no outlier in (1), the ML solution [4] is
obtained from minimizing the following least squares cost
function:

XM
m ¼ 1

XN
n ¼ 1

rm;n� Jθ�tm J� Jθ�rn J
� �2

: ð5Þ

However, when there are outlier range measurements, the
quadratic function in (5) will amplify the contributions of
the outliers which are far away from the mean value of the
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