
Fast communication

Variable step-size diffusion least mean fourth algorithm
for distributed estimation

Jingen Ni a,n, Jian Yang a,b

a School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
b Seagate Technology (Suzhou) Co., Ltd., Suzhou 215021, China

a r t i c l e i n f o

Article history:
Received 27 August 2015
Received in revised form
8 November 2015
Accepted 24 November 2015
Available online 11 December 2015

Keywords:
Diffusion strategy
Distributed estimation
Variable step-size
Least mean fourth algorithm

a b s t r a c t

The diffusion LMS (DLMS) is one of the most popular online distributed estimation
algorithms, due to its simplicity and ease of implementation. However, it may suffer from
large steady-state misalignment in some strong, non-Gaussian noise environments. To
address this problem, this paper introduces a diffusion least mean fourth (DLMF) algo-
rithm by using the mean-fourth error cost function in a diffusion strategy. Moreover, a
variable step-size (VSS) method is developed to further reduce the steady-state mis-
alignment of the DLMF. Simulation results show that the DLMF outperforms the DLMS
with uniform or binary noise, and that the VSS-DLMF has a superior steady-state per-
formance as compared to the DLMF.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In centralized estimation, agents in the network
transmit their data to a fusion center for processing, which
needs extensive amounts of communications between the
fusion center and agents. Besides, this kind of network is
not robust against the failure of the fusion center. To
address this problem, the concept of distributed estima-
tion was proposed. Distributed estimation can be used in
scenarios where a set of agents are required to collectively
estimate some unknown vector without using a fusion
center [1].

In recent years, distributed estimation has been widely
used in many applications [2], and many distributed esti-
mation algorithms were proposed, such as the incremental
LMS [3,4], incremental APA [5,6], diffusion LMS (DLMS)
[7,8], and multitask DLMS [9,10]. Moreover, some dis-
tributed stochastic gradient (sub-gradient) descent algo-
rithms for solving a general convex cost function were

developed, e.g., in [11,12]. Among these algorithms, the
DLMS [8] is one of the most popular online distributed
estimation algorithms, due to its simplicity and ease of
implementation. Recently, two DLMS with reduced com-
munication overhead were proposed in [13,14], respec-
tively. Although the DLMS and its variants have many
advantages, in the case where the measurement noise is
non-Gaussian, such as strong uniform or binary noise, it
may suffer from high steady-state misalignment.

Research has shown that adaptive algorithms based on
high-order moment cost function may yield lower steady-
state misalignment than those based on mean-square
error (MSE) one in some strong, non-Gaussian noise
environments. Among others, the well-known least mean
fourth (LMF) is a typical adaptive algorithm derived form
high-order moment cost function minimization [15]. Over
the last decade, the performance and variants of the LMF
have been extensively studied, e.g., [16–20].

This paper first introduces a diffusion LMF (DLMF)
algorithm by employing the mean-fourth error (MFE) cost
function in the diffusion strategy presented in [12] to
enhance the performance of distributed estimation in
some strong, non-Gaussian noise environments. Then a
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variable step-size (VSS) method is developed for the DLMF
to address the tradeoff between fast convergence rate and
low steady-state misalignment. Simulation results will
show that when the measurement noise is strong uniform
or binary noise, the DLMF obtains lower steady-state
misalignment than the DLMS and the VSS-DLMF has
superior steady-state performance as compared to
the DLMF.

Throughout the paper, normal letters are used for sca-
lars, boldface lowercase letters for vectors, and boldface
uppercase letters for matrices. Moreover, Ef�g denotes
expectation operation, ð�Þ> represents transpose, J � J
takes the ℓ2-norm, sgnf�g is the sign function, and ∇ is the
gradient operator.

2. Signal model and DLMF

Fig. 1 illustrates a diffusion network consisting of N
agents, where uk(i) and dk(i) are the input and observation
signals at agent k, respectively, N k represents the set of
agents connected to agent k, including agent k itself. The
observation signal of each agent k is normally given by the
linear model

dkðiÞ ¼ u>
k;iw

oþvkðiÞ ð1Þ

where uk;i ¼ ½ukðiÞ;ukði�1Þ;…;ukði�Mþ1Þ�> is the input
vector consisting of the M most recent samples of ukðiÞ, wo

is an unknown vector to estimate, vkðiÞ denotes the mea-
surement noise, which is assumed to be independent of
any other signals in the network.

In [12], an adapt-then-combine (ATC) and a combine-
then-adapt (CTA) diffusion strategies using a general con-
vex cost function were proposed. We focus on the ATC
diffusion strategy in this work, because it can achieve
lower steady-state misalignment than the CTA diffusion
strategy in some situations. Denote the estimate for wo at
agent k and time i by wk;i. The ATC diffusion strategy
consists of the following adaptation and combination steps
[12]:

ψk;i ¼wk;i�1�μk
P

lAN k

cl;k∇wJlðwk;i�1Þ ð2aÞ

wk;i ¼
P

lAN k

al;kψ l;i ð2bÞ

8>><
>>:
where ψk;i is the intermediate estimate for wo at agent k
and time i, μk denotes a small positive step-size parameter,
Jlð�Þ is a general convex cost function, cl;k and al;k are the

adaptation and combination weights of agent l on agent k,
respectively, which satisfy

cl;kZ0;
XN
k ¼ 1

cl;k ¼ 1; and cl;k ¼ 0 if l=2N k ð3Þ

al;kZ0;
XN
l ¼ 1

al;k ¼ 1; and al;k ¼ 0 if l=2N k: ð4Þ

There are several rules for selecting these weights, such as
the uniform, maximum degree, Metropolis, relative
degree, and relative degree-variance rules, which were
summarized in [8].

Define the component cost function at agent l as

FlðwÞ ¼ E dlðiÞ�u>
l;i w

h i4� �
: ð5Þ

Obviously, this cost function is convex and therefore can
be used in (2a). Its gradient with respect to wk;i�1 is

∇wFlðwk;i�1Þ ¼ �4E ul;i dlðiÞ�u>
l;i wk;i�1

h i3� �
: ð6Þ

Replacing ∇wJlðwk;i�1Þ in (2a) by the instantaneous value
of ∇wFlðwk;i�1Þ in (6), we obtain

ψk;i ¼wk;i�1þμk
P

lAN k

cl;kul;i dlðiÞ�u>
l;i wk;i�1

h i3
ð7aÞ

wk;i ¼
P

lAN k

al;kψ l;i ð7bÞ

8>>><
>>>:
which is the weight vector update equation of the DLMF.
Note that the factor 4 appears in (6) is absorbed into the
step-size μk in (7a).

3. Variable step-size development

The performance of the DLMF depends on the step-
sizes fμkg. If the step-sizes are large, then the DLMF con-
verges fast, but its steady-state misalignment is high; if the
step-sizes are small, then its steady-state misalignment is
low, but it converges slowly. The DLMF needs to take a
tradeoff between fast convergence rate and low steady-
state misalignment by using constant step-sizes.

Research has verified that using a variable step-size can
address the tradeoff problem existing in adaptive algo-
rithms. The method of largest decrease of mean square
deviation (MSD) is one of the popular methods to derive
variable step-sizes [21]. However, this method does not
apply to the LMF due to the cube of the error signals in its
update equation. Since the DLMF is an extension of the
LMF in network domain and therefore the method of lar-
gest decrease of MSD can also not be used to derive vari-
able step-sizes for the DLMF, we need to use other meth-
ods to derive variable step-sizes.

In [22] a gradient descent method was proposed to
derive a variable regularization parameter to address the
tradeoff problem for the normalized LMS (NLMS). In [23] a
normalized gradient descent method was presented to
derive an improved variable regularization parameter. In
the following, we will use the normalized gradient descent

Fig. 1. A diffusion network consisting of N agents, where uk(i) and dk(i)
represent the input and observation signals of agent k, respectively.
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