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a b s t r a c t

This study is aimed at eliminating the influence of the higher-order modes on the
frequency response functions (FRFs) of non-proportionally viscously damped systems.
Based on the Neumann expansion theorem, two power-series expansions in terms of
eigenpairs and system matrices are derived to obtain the FRF matrix. The relationships
satisfied by eigensolutions and system matrices are established by combining the two
power-series expansions. By using the relationships, an explicit expression on the
contribution of the higher-order modes to FRF matrix can be obtained by expressing it
as a sum of the lower-order modes and system matrices. A hybrid expansion method
(HEM) is then presented by expressing FRFs as the explicit expression of the contribution
of the higher-order modes and the modal superposition of the lower-order modes. The
HEM maintains original-space without having to use the state-space equation of motion
such that it is efficient in computational effort and storage capacity. Finally, a two-stage
floating raft isolation system is used to illustrate the effectiveness of the derived results.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The frequency response functions (FRFs) of mechanical and structural systems are of interest in dynamic problems
subjected to harmonically varying loading that may be caused by reciprocating or rotating machine parts including motors,
fans, compressors, and forging hammers [1,2]. FRFs are of fundamental importance and play a very important role in many
areas such as model updating [3,4], structural damage detection [5,6], vibration and noise control [7,8], system identification
[9–11], dynamic optimization [12,13] and many other applications.

Two kinds of methods, i.e., direct frequency response method (DFRM) and modal superposition method, are usually used
to calculate the FRFs. The DFRM is based on the direct frequency results in an exact calculation by solving the inversion of
the dynamic stiffness matrix directly. The modal superposition method calculates the FRFs by expressing them as the
summation of the contributions of all the modes. The modal superposition method has been extensively used in many
dynamic analyses, and also programmed in some commercial software, e.g., NASTRAN, ANSYS or ABAQUS. However, the
modal superposition method requires that all the frequencies and mode shapes should be available. As we know, often it is
difficult, or even unnecessary, to obtain all the eigenpairs of a large-scaled model, which means that the modal truncation
scheme is generally used and the modal truncation error is therefore introduced. As a result, the quality of the calculated
FRFs may be adversely affected.

The corrections to the modal truncation scheme have been investigated by several authors. Model acceleration methods
[14–18] approximates the contribution of higher-order (unavailable) modes to dynamic response in terms of a pseudo-static
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term, which is a particular solution of the dynamic equation of motion (the particular solution can be considered as the
exciting frequency equals zero). Since the mode acceleration method neglects the contribution of both velocity and
acceleration terms to the dynamic response, it can be considered as a state approximation method. Dynamic correction
methods [19–21], which were developed to improve the accuracy of mode acceleration method, include the contribution of
higher-order modes by a sum of the particular solutions of both the equation of motion and the reduced differential
equation of motion. Force derivative methods [22,23] reduce the modal truncation error by considering the higher-order
derivatives of the forcing function, which means the forcing function should be described by analytical laws. The force
derivative methods take advantage of the fact that successive integrations by parts of the convolution integral produce
terms, which can be expressed as the combination form of system matrices, the forcing function and its derivatives. In
addition, the correction methods for stochastic systems have been studied by Refs. [24–26] and can give a corrected
response for both the deterministic and random forcing function. Bilello et al. [27,28] studied the corrected methods for
continuous systems.

For the past two decades, high accurate modal superposition methods [29–33] were developed to the problem on the
correction to the modal truncation scheme by combining the mode superposition of the lower (available) modes and a
power-series expansion of dynamic response in terms of system matrices. These methods have been applied widely in the
sensitivity of mode shapes [34–36] and the sensitivity of responses in the frequency domain [37–39]. Recently, Qu [40]
presented an adaptive mode superposition and acceleration technique to solve the problem how many items of the
convergent power-series expansion of dynamic response should be considered to satisfy the necessary accuracy. However,
the high accurate modal superposition methods [36,39] approximate the FRFs using 2N-space (state-space) formulation,
where N is the system dimension. Although these 2N-space correction methods are exact in nature, the 2N-space correction
method usually needs heavy computational cost for real-life multiple degrees-of-freedom (DOF) systems since the size of
system matrices of state-space equations is double. More recently, Li et al. [41] developed N-space correction methods to
calculate the FRFs of nonviscously (viscoelastically) damped systems. The N-space correction methods attempt to
approximate the influence of higher-order modes in terms of the lower-order modes and system matrices by using the
first one or two terms of Neumann expansion of the contribution of higher-order modes. However, these procedures cannot
be extended to further high-order terms since all of them will be affected by the nonviscous damping matrix which is
frequency-dependent.

In this study, the correction problem of the modal truncation scheme of non-proportionally viscously damped systems is
studied. The aim of this paper is to propose an N-space power-series expansion method to the problem on the correction of
FRFs. Based on the Neumann expansion theorem, two power-series expansions in terms of eigenpairs and system matrices
are derived to obtain the FRF matrix. By using the two power-series expansions, an explicit expression on the contribution of
the higher-order modes can be expressed as a sum of the lower-order modes and system matrices. Then, a hybrid expansion
method is presented by expressing the FRFs as the explicit expression of the contribution of the higher-order modes and the
modal superposition of the lower-order modes.

The second section of this paper simply reviews the dynamic of non-proportionally viscously damped systems. The third
section presents two power-series expansions to compute the FRF matrix. The fourth section gives some relationships
between eigensolutions and system matrices, and presents an N-space power-series expansion method to the problem on
the correction of FRF matrix and the displacement vectors. And the fifth section presents illustrate the engineering
application, accuracy and efficiency of the presented method by a two-stage floating raft isolation system.

2. Dynamic of viscously damped systems

The dynamic equation of motion for a viscously damped system with N DOF in Laplace domain can be expressed as

ðs2Mþ sCþ KÞXðsÞ ¼ FðsÞ or DðsÞXðsÞ ¼ FðsÞ ð1Þ

where M, C and KAℝN�Nare, respectively, the mass, damping and stiffness matrices (only consider symmetric system
matrices in this study), FðsÞ is the forcing vector and XðsÞ is the displacement vector. The matrix DðsÞ ¼ s2Mþ sCþ K is
so-called the dynamic stiffness matrix. In the context of structural dynamics, s¼ iω, where i¼

ffiffiffiffiffiffiffi
�1

p
and ω denotes the

exciting frequency in rad/s. The viscously damped system cannot be simultaneously decoupled by modal analysis unless it
also possesses a full set of classical normal modes. The condition of viscously damped systems to possess classical normal
modes (known as the proportionally damped system), originally introduced by Rayleigh [42] in 1877, is still extensively
used. It shows that a viscous damping is proportionally damping if the damping matrix is a linear combination of inertia and
stiffness matrices. This damping is routinely assumed in engineering applications. Later, Caughey and O’Kelly [43] and
Adhikari [44] gave some more restrictive conditions which make damped systems possess normal modes as well. Generally
speaking, proportional damping means that energy dissipation is almost uniformly distributed throughout the mechanical
system [45]. However, there is no reason why these mathematical conditions must be satisfied. In practical, systems with
two or more parts with significantly different levels of energy dissipation are encountered frequently in engineering
designs. To this end, the non-proportionally damped system is considered in this study, i.e., the concern of this study is
when these mathematical conditions are not met, the most general case in engineering applications.
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