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a b s t r a c t

This paper presents a nonlinear decoupling approach based on the Modified Generalized
Frequency Response Functions (MGFRFs) and the nonlinear feature of phase invariance,
for the pure nonlinearity-input nonlinear system. The MGFRFs are defined by combining
the ‘homotopy’ GFRFs and phase information of the system input. The nonlinear feature of
phase invariance is extracted based on MGFRFs. The decoupling approach is proposed
based on MGFRFs and extended from the pure tone excitation to the multi-tone
excitations by considering phase invariance. Numerical simulation and experimental
investigation were carried out, whose results have shown that nonlinear feature of phase
invariance is correct and reasonable and the proposed decoupling approach is valid and
feasible. The proposed decoupling approach can be employed to identify the excitation
sources and to estimate nonlinear system parameters for the pure nonlinearity-input
nonlinear vibration system.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Identification of vibration and noise source is prior to transfer path analysis. Both methods are the basis of improving
vibration and noise reduction technology for the practical system, e.g. ships, submarines and aircrafts. There are many
identification methods to cope with the sources when the sources are uncorrelated. Bendat et al. [1] introduced both
coherence analysis and partial coherence analysis into the white noises MIMO system. Zhang et al. [2] evaluated underwater
noise source contribution of ships by using partial coherence analysis on cross-spectral matrix data. Belouchrani et al. [3]
presented joint diagonalization of covariance matrix of two order statistics. Blind source separation (BBS) is one of the most
effective methods when the sources are uncorrelated and statistically independent. Hyvarinen et al. [4] proposed
independent component analysis (ICA) based on high order statistics and Shannon entropy, and consequently conditionally
ICA, kernel ICA and topological ICA came forth on BBS [4,5].

When nonlinearity is introduced into linear system, nonlinear behavior is the rule in the dynamic behavior of the
physical system [6]. Mathematical modeling is one primary approach to understand nonlinear behavior, which obtained
the representing model of the complete system. However, system identification plays more crucial role because it helps the
structural dynamicist to reconcile numerical predictions with experimental investigations, to extract the information
about the structural behavior from experiment data [7], and to estimate the parameters of experimental system.
The methods of nonlinear system identification in structural dynamics are classified into seven categories, namely
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by-passing nonlinearity: linearization, time and frequency-domain methods, modal methods, time–frequency analysis,
black-box modeling and structural model updating [7]. And some types of the models are employed in the process of
nonlinear system identification, e.g. Volterra series [8], Fourier series [9], Hammerstein model [10], Wiener model [11],
Hammerstein–Wiener model [12], and the orthogonal polynomial model [13].

In the identification process, once nonlinear behavior has been characterized, the parameters of the selected model are
estimated using some linear or optimization algorithms depending upon the method considered [7]. Volterra series is a
direct generalization of the linear convolution integral and has been widely applied in the analysis and design of nonlinear
systems, both in time [14] and frequency [15] domain. Although Volterra series is a technique suitable for describing higher
order Frequency Response Functions (FRFs) [14], it requires a large number of multidimensional coefficients to accurately
model a nonlinear system, which makes it computationally intensive and complex [16]. Representation and identification of
an all-purpose Volterra series is almost impossible [17]. Hence, in many practical situations, a truncated Volterra series is
utilized to model a system characteristic with nonlinearities. The truncation order and its effect in Volterra series have been
studied, e.g. Jing [18] established the analytical relationships among truncation order, excitation magnitudes, and estimation
error for the output spectra of nonlinear systems. Moreover, Volterra series suffers from the problem of limited convergence
[19,20] while the truncated model may lead to the errors [18,19]. The convergence aspects of Volterra series have been
investigated, e.g. Barrett [21] proposed a time domain criterion to prove that Volterra series converges within a given region
for a class of nonlinear systems with cubic stiffness nonlinearity; Li and Billings [22] extended this time-domain criterion to
frequency-domain to accommodate the analysis of nonlinear oscillators; Sandberg [23] showed that a truncated model
provides a uniform approximation to the infinite Volterra series on a ball of bounded input for a large class of systems;
Chatterjee and Vyas [19] founded that the convergence limitations of Volterra series of Duffing oscillator under harmonic
excitation are a function of the non-dimensional non-linear parameter and also dependent on the number of terms
considered in the response series.

However, at present, there is no existing general method to calculate Volterra kernels for nonlinear systems, although
they can be calculated for systems whose order is known and finite [16]. In time domain, the estimation of Volterra kernels
has been studied based on block-oriented nonlinear structures [24–26], Wiener series or the other type of orthogonal
functions [14,27], adaptation estimate methods [16,28] and the factorization method [29]. Kibangou and Favier proposed
the estimation of the diagonal coefficients of Volterra kernels associated with Wiener–Hammerstein models [24] and
parallel-cascade Wiener models [25], and developed a tensor analysis-based approach [26] for optimizing the parameters of
block-oriented nonlinear structures. Dewson et al. [27] demonstrated that the orthogonal representation of Volterra kernels
is directly described by the time series moments. Silva et al. [14] suggested an approach based on the identification of the
1st- and 2nd-order Volterra kernels in an orthogonal basis. Singh and Chatterjee [16] carried out estimation of truncated
2nd-order Volterra kernels by employing several adaptation algorithms. Brenner and Xu [29] developed an efficient
factorization method that reduces a higher order Volterra kernel to a product of Volterra kernels of order one.

The frequency-domain version of Volterra kernels, called Generalized FRFs (GFRFs, linear and higher order FRFs), which
can be obtained by taking the multiple Fourier transform of Volterra kernels, has also been extensively studied [30]. Worden
et al. [31] extended single-input Volterra series to multi-input Volterra series through definition of direct and cross-kernels.

Nomenclature

a linear output coefficient
b; c (nonlinear) input coefficient
d differential operator
e natural logarithmic base
e relative error
f frequency
g;h Volterra kernel
j imaginary unit
i; j; k; l positive integer
m white Gauss noise; positive integer
n white Gauss noise; positive integer
p differential order
t time
u input of system
y output of system
F primary function of integral transform
H;H (generalized) frequency response function
Ĥ the modified generalized frequency response

function

Ĥ the modified generalized frequency response
function matrix

M the order of harmonic frequency; positive
integer

N the truncation order of nonlinear system;
positive integer

N the set of natural numbers
U frequency-domain input
Û the modified frequency-domain input
Û the modified frequency-domain input vector
Y frequency-domain output
Y frequency-domain output vector
α amplitude
β angular variable
π the ratio of the circumference
τ time
φ phase
ω angular frequency
Ψ complex function
Ω normalized frequency
int integrate function
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