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a b s t r a c t

In structural health monitoring (SHM) and control, the structure can be instrumented
with an array of sensors forming a redundant sensor network, which can be utilized in
sensor fault diagnosis. In this study, the objective is to detect, identify, and quantify a
sensor fault using the structural response data measured with the sensor network. Seven
different sensor fault types are investigated and modelled: bias, gain, drifting, precision
degradation, complete failure, noise, and constant with noise. The sensor network is
modelled as a Gaussian process and each sensor in the network is estimated in turn using
the minimum mean square error (MMSE) estimation The sensor fault is identified and
quantified using the multiple hypothesis test utilizing the generalized likelihood ratio
(GLR). The proposed approach is experimentally verified with an array of accelerometers
assembled on a wooden bridge. Different sensor faults are simulated by modifying a single
sensor. The method is able to detect a sensor fault, identify and correct the faulty sensor,
as well as identify and quantify the fault type.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

With emerging sensor technology, an increasing number of sensors can be installed to structures for monitoring and
control. Due to the high number of low-cost sensors, sensor faults become more frequent compared to the structure's
lifetime. Because the monitoring or control applications utilize the sensor data for decision, it is important that the data
acquired are accurate and reliable. A faulty sensor cannot perform its function properly but instead may provide false
information for decision, thus making the system unreliable. Therefore, it is necessary to detect such failures and adapt to
the new situation with correcting actions. With a high number of sensors, the measurement system is redundant, and
removing a sensor will result in no loss of information. This fact can be utilized in detecting, isolating and correcting a faulty
sensor. Sometimes it is also important to identify the type and magnitude of sensor fault, for example to investigate the
long-term behaviour of the sensor network in monitoring systems, to make a decision upon sensor replacement, to find the
origin of the fault, or to design more robust sensors or data acquisition systems. In this paper, an automatic method is
proposed to detect and isolate the faulty sensor in a network, and then to identify the type and magnitude of the fault.

A brief review of sensor validation research is given in the following. There are two main approaches: (1) hardware
redundancy and (2) analytical redundancy [1]. The first approach uses the fact that several sensors measure the same
quantity. The second approach utilizes a mathematical model of the system, for example a finite element model, and the
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redundancy is provided by the model. Both approaches have their advantages and disadvantages. For hardware redundancy,
extra sensors are required, and for analytical redundancy, an accurate mathematical model must be created. In many cases,
it is impractical or too expensive to build a precise model using the finite element method or experimental modal analysis.
In this paper, we restrict to hardware redundancy.

The sensor network is assumed to monitor a linear time-invariant system, e.g. a structure or a process, with simultaneous
sampling. There are basically two types of redundancy: direct or static redundancy and temporal or dynamic redundancy [2].
Static redundancy corresponds to spatial correlation between different sensors at the same time instant, whereas dynamic
redundancy takes into account temporal correlation between adjacent time increments. Using hardware redundancy,
static redundancy is possible if the number of states of the system is less than the number of sensors. In this paper, the
application is typically a structural system, e.g. a bridge. The number of states is roughly equal to the number of active
natural modes. If dynamic redundancy is utilized, the number of sensors may be lower, but stationarity of the process is
often assumed.

Sensor validation has been studied e.g. in [3,4] using the parity space approach. Other methods include principal
component analysis (PCA) [2,5–10], independent component analysis (ICA) [10], factor analysis [11], and minimum mean
square estimation (MMSE) [12,13]. Comparisons of different methods have been performed in [10,11]. MMSE has also been
applied to damage detection and localization in structures [14] and in distinguishing between different sources of changes
in vibration data: environmental influences, sensor faults, and structural damage [15].

The analysis can be based on the parity space approach which uses a measurement model y¼Hx to generate a set of
residuals that are sensitive to faults [3]. More specifically, the anomalies in the data are found from the null-space of HT.
Here y is a vector of the measurements (sensors), H is the measurement matrix and x is a vector of the unknown state
variables. For a redundant system, the number of columns in H must be higher than the number of rows, i.e. the dimension
of y is larger than the dimension of x. The disadvantage of this approach is that the measurement matrix H is often
unknown. One could try to identify it or alternatively use a direct statistical method in which the aforementioned
measurement model is not explicitly used. In [2], this type of model was applied using principal component analysis (PCA).

There are few studies identifying the types or magnitudes of sensor fault. The objective of this paper is to identify the
most common sensor faults and assess the severity of the fault, or more specifically, estimate the fault parameters of
the sensor. In a large sensor network, it would be most useful and informative to automatically infer the type and severity of
the fault. For example, some fault types may occur recurrently. The severity of the fault gives information for possible
replacement of the sensor.

The primary assumption is that initially all sensors in the network are functioning. Training data are available from this
network to build the model. The measurement matrix H is not explicitly formed.

This paper is organized as follows. The sensor network model is presented in Section 2. This model is then used in
Section 3 to detect a sensor fault with a composite hypothesis test using the generalized likelihood ratio test (GLRT).
Different sensor fault models are derived in Section 4. An algorithm is proposed in Section 5 to identify and quantify the
sensor fault using the multiple hypothesis test. Experimental results are presented in Section 6 to validate the proposed
method. Finally, concluding remarks are given in Section 7.

2. Sensor network model

The dynamic response x of a linear system comprises of the modal contribution of the d lowest modes and the static
correction term [16]:

xðtÞ ¼ ∑
d

i ¼ 1
ϕiqiðtÞ þ K−1− ∑

d

i ¼ 1
Fi

" #
Bf ðtÞ ð1Þ

where ϕi is the mode shape vector of mode i and qi(t) is the response of mode i, The term in the brackets is a constant
matrix, where K is the stiffness matrix of the system and Fi is

Fi ¼
ϕiϕ

T
i

ϕiKϕ
T
i

ð2Þ

f(t) is the vector of load amplitude functions and B is the load distribution, or input, matrix with a number of columns equal
to the number of load amplitude functions.

If the load distribution is constant with B having r columns, the number of states is dþ r. For example, in case of a single
concentrated force, a high number of modes are excited, but if f(t) consists of lower frequencies only, the higher modes
respond statically, which can be taken into account with just a single term as B consists of one column only. The load
distribution can also be such that it only excites the lowest modes and the static correction term is negligible. For example,
the distribution of wind excitation is often smooth exciting only the lowest modes and consequently the static correction
term is small. The wind distribution is also often relatively constant and B can be approximated with a single column. Traffic
excitation may need more sensors as the load distribution is not constant and consequently B can have several columns. In
such a case the sensor network model may not be able to model all the response, but some additional noise may be
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