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a b s t r a c t

In many engineering situations, we are interested in finding the correlation r between

different quantities x and y based on the values xi and yi of these quantities measured in

different situations i. Measurements are never absolutely accurate; it is therefore necessary to

take this inaccuracy into account when estimating the correlation r. Sometimes, we know the

probabilities of different values of measurement errors, but in many cases, we only know the

upper bounds Dxi and Dyi on the corresponding measurement errors. In such situations, after

we get the measurement results ~xi and ~yi , the only information that we have about the actual

(unknown) values xi and yi is that they belong to the corresponding intervals ½ ~xi�Dxi , ~xiþDxi�

and ½ ~yi�Dyi, ~yiþDyi�. Different values from these intervals lead, in general, to different values

of the correlation r. It is therefore desirable to find the range ½r ,r� of possible values of

the correlation when xi and yi take values from the corresponding intervals. In general,

the problem of computing this range is NP-hard. In this paper, we provide a feasible

(¼polynomial-time) algorithm for computing at least one of the endpoints of this interval:

for computing r when r40 and for computing r when ro0.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Need for correlation. In engineering, we design systems for real-world applications. To make sure that the system
functions correctly, we need to take into account all possible situations in which these systems will function. Each such
situation can be characterized by the values of different quantities. To describe which combinations of these values
are more probable and which are less probable, it is necessary to know which quantities are independent and which are
correlated—positively or negatively.

To estimate the correlation between the quantities x and y, we repeatedly measure the values xi and yi of both
quantities in different situations i. The correlation r is then estimated as the ratio

r¼ C

sx � sy

of the covariance C to the product of standard deviations sx ¼
ffiffiffiffiffiffi
Vx

p
and sy ¼

ffiffiffiffiffiffi
Vy

p
. Covariance and standard deviations, in

their turn, are defined as follows:

C ¼
1

n
�
Xn

i ¼ 1

ðxi�ExÞ � ðyi�EyÞ ¼
1

n
�
Xn

i ¼ 1

xi � yi�Ex � Ey,

Vx ¼
1

n
�
Xn

i ¼ 1

ðxi�ExÞ
2, Vy ¼

1

n
�
Xn

i ¼ 1

ðyi�EyÞ
2,
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and the means Ex and Ey are estimates as follows:

Ex ¼
1

n
�
Xn

i ¼ 1

xi, Ey ¼
1

n
�
Xn

i ¼ 1

yi:

Comment. In the above formulas, we use the estimates for C, Vx, and Vy which are known to be biased. Usually, correlation
is defined by using unbiased definitions

C ¼
1

n�1
�
Xn

i ¼ 1
ðxi�ExÞ � ðyi�EyÞ ¼

1

n�1
�
Xn

i ¼ 1
xi � yi�Ex � Ey,

Vx ¼
1

n�1
�
Xn

i ¼ 1
ðxi�ExÞ

2, Vy ¼
1

n�1
�
Xn

i ¼ 1
ðyi�EyÞ

2:

One can easily check that the resulting expression for r is the same whether we use biased or unbiased estimates; we use
biased estimates because they make the computations slightly simpler.

Known facts about correlation: brief reminder. It is known that the value of this correlation coefficient r is always
between �1 and 1. The correlation is equal to 1 if and only if the values are positively linearly dependent, i.e., when for some
coefficient kx40, we have yi ¼ Eyþkx � ðxi�ExÞ for every i. The correlation is equal to �1 if and only if the values are negatively
linearly dependent, i.e., when for some coefficient kxo0, we have yi ¼ Eyþkx � ðxi�ExÞ for every i.

Need to take into account interval uncertainty. The values xi and yi used to estimate correlation come from measurements, and
measurements are never absolutely accurate: the measurement results ~xi and ~yi are, in general, different from the actual
(unknown) values xi and yi of the corresponding quantities. As a result, the value ~r estimated based on these measurement results
is, in general, different from the ideal value r which we would get if we could use the actual values xi and yi. It is therefore
desirable to determine how accurate is the resulting estimate.

Sometimes, we know the probabilities of different values of measurement errors ~xi�xi and ~yi�yi. However, in many
cases, we do not know these probabilities, we only know the upper bounds Dxi and Dyi on the corresponding measurement
errors: 9 ~xi�xi9rDxi and 9 ~yi�yi9rDyi; see, e.g., [15]. In this case, the only information that we have about the actual values
xi and yi is that they belong to the corresponding intervals ½xi,xi� ¼ ½ ~xi�Dxi, ~xiþDxi� and ½y

i
,yi� ¼ ½ ~yi�Dyi, ~yiþDyi�. Different

values xi 2 ½xi,xi� and yi 2 ½yi
,yi� lead, in general, to different values of the covariance. It is therefore desirable to find the

range of all possible values of the covariance r:

½r,r� ¼ frðx1, . . . ,xn,y1, . . . ,ynÞ : xi 2 ½xi,xi�,yi 2 ½yi
,yi�g:

The problem of computing the range of correlation under interval uncertainty is a particular case of the general
problem of interval computations (see, e.g., [8,12]): computing the range of a given function f ðx1, . . . ,xnÞ under the interval
uncertainty x1 2 ½x1,x1�, y, xn 2 ½xn,xn�. Interval computations – in particular, interval computations of statistical characteristics –
have many applications, in particular, engineering applications; see, e.g., [2,7,8–14,16].

For example, if we perform a statistical analysis of the measurement results, then, for each statistical characteristic
Sðx1, . . . ,xnÞ, we need to find its range

S¼ fSðx1, . . . ,xnÞ : x1 2 x1, . . . ,xn 2 xng:

For the mean Ex, the situation is simple: the mean is an increasing function of all its variables. So, its smallest value Ex is
attained when each of the variables xi attains its smallest value xi, and its largest value Ex is attained when each of the
variables attains its largest value xi:

Ex ¼
1

n
�
Xn

i ¼ 1

xi, Ex ¼
1

n
�
Xn

i ¼ 1

xi:

Estimating correlation under interval uncertainty is NP-hard. In contrast to the mean – which is always monotonic –
variance, covariance, and correlation are sometimes non-monotonic. It turns out that, in general, computing the values of
these characteristics under interval uncertainty is NP-hard [3,4,13,14]. This means, crudely speaking, that unless P¼NP
(which most computable scientists believe to be wrong), no feasible (i.e., no polynomial-time) algorithm is possible that
would always compute the range of the corresponding characteristic under interval uncertainty.

The problem of estimating correlation under interval uncertainty is formulated and analyzed in [16]; in that paper, this
problem is formulated and solved as an optimization problem. For reasonably small n, the corresponding optimization
algorithms work well [16]. However, since the problem is NP-hard, the computation time becomes infeasible when n

is large.

What we do in this paper. We show that while we cannot have an efficient algorithm for computing both bounds r and
r, we can effectively compute (at least) one of the bounds. Specifically, we show that we can compute r when r40 and
we can compute r when ro0. This means that, in the case of a non-degenerate interval ½r,r� (i.e., ror):

� when rr0, we compute the lower endpoint r;
� when 0rr, we compute the upper endpoint r;
� in all remaining cases, when ro0or, we compute both lower endpoint r and r.
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