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a b s t r a c t

In practice, reliability analysis of structures is often performed on the basis of limited

data. Under this circumstance, there are practical difficulties in identifying unique

distributions as input for a probabilistic analysis. But the selection of realistic

probabilistic input is critical for the quality of the results of the reliability analysis.

This problem can be addressed using an entire set of plausible distribution functions

rather than one single distribution for random variables based on limited data. The

uncertain nature of the available information is then reflected in the probabilistic input.

An imprecise probability distribution can be modeled by a probability box, i.e., the

bounds of the cumulative distribution function for the random variable. Sampling-

based methods have been proposed to perform reliability analysis with probability

boxes. However, direct sampling of probability boxes requires a large number of

samples. The computational cost can be very high as each simulation involves an

interval analysis (a range-finding problem). This study proposes an interval quasi-

Monte Carlo simulation methodology to efficiently compute the bounds of structure

failure probabilities. The methodology is based on deterministic low-discrepancy

sequences, which are distributed more regularly than the (pseudo) random points in

direct Monte Carlo simulation. The efficiency and accuracy of the present method is

illustrated using two examples. The reliability implications of different approaches for

construction of probability boxes are also investigated through the example.

Crown Copyright & 2012 Published by Elsevier Ltd. All rights reserved.

1. Introduction

The building process of civil engineering structures and infrastructure is complicated by the various sources of
uncertainties in structural resistance and loads, as well as in computational models. These uncertainties are treated as
random variables when using established probabilistic methods for reliability analysis. Structural reliability is then
measured by a probability of failure, Pf [28].

Although the mathematical formulation as well as the basic numerical techniques for the calculation of Pf appears to be
straightforward, difficulties appear in practical applications. For one thing, the evaluation of the involved multi-
dimensional integral can be challenging. Development of numerical techniques target at a high numerical efficiency
and concern advanced concepts of Monte Carlo (MC) simulation such as subset simulation [2] and line sampling [26].
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Particular attention is currently paid to simulation schemes for high-dimensional problems. Moreover, there are practical
difficulties in identifying the proper distribution for the random variables particularly to model their extremes (‘‘tails’’)
which are of the greatest concern in reliability assessment. Structural failure probabilities, generally very small, are
sensitive to the choice of probability distributions [11]. However, available data on structural strength and loads are
typically limited, and competing distributions often cannot be distinguished by standard statistical tests. When
observational data are limited, the analyst may not be able to identify the type of the distribution of a random variable,
or precise values for the distribution parameters, or there may be competing probabilistic models. The selection of a
distribution for the probabilistic input is so generally realized based on ambiguous information and indications. This may
lead to a wrong model choice and a strong overestimation of structural reliability resulting in critical decisions with severe
consequences.

It is advisable to consider the distribution itself as uncertain. These statistical uncertainties are epistemic (knowledge-
based) in nature [10]. Because of the distribution sensitivity problem, the failure probability calculated on the basis of
small data samples is only a ‘‘notional’’ value and should not be interpreted as a relative frequency in an absolute sense
[11,10]. To overcome the distribution sensitivity problem, the development of the first-generation probability-based
structural design codes utilized a process of calibration to existing practice. The notional reliabilities associated with
existing and new practices were computed in the same model universe of probability distributions and used as a means of
comparison [13]. If the calculated reliabilities are notional and only used for the purpose of reliability comparison, then the
uncertainty in the distributions is generally of minor importance and can be ignored. A reliability comparison in this sense
represents a ranking of alternatives, whereby the uncertainties in the distributions associated with the alternatives are
normally not significantly different in magnitude since they origin from the same source (same model universe of
probability distributions). The effects of the uncertainties in the distributions, hence, cancel out one another on an ordinal
(ranking) scale almost completely.

However, there are circumstances where epistemic uncertainties due to limited availability of data need to be included
explicitly in reliability analysis and, further on in risk assessment. One such case is the risk-informed decision-making, in
which the regulatory authorities often see a need to quantify the confidence in the results of the risk assessment,
particularly if the event is rare but the consequence is severe. Another case is the performance-based approach to
structural design. In this new paradigm of structural engineering, it is necessary to establish explicit reliability/risk terms
to rationalize the selection of performance levels in structural design. Designers using innovative building materials and
technologies are also concerned with computing realistic structural reliabilities because they cannot rely on past
experience to calibrate the reliabilities. In all these circumstances a notional reliability measure without taking into
account the epistemic uncertainty in the distributions is not very helpful.

Within a pure probabilistic framework, epistemic uncertainty can be handled with Bayesian approaches. Uncertain
parameters of a probabilistic model can be described with prior distributions and updated by means of limited data. They
can then be introduced formally, with the remaining (aleatory) uncertainties, in the reliability calculation [10,12]. In the
case where competing probabilistic models exist, each model is considered separately with an assigned probability mass.
A failure probability can be computed for each probabilistic model. The expectation of the failure probability can then be
calculated as a characteristic result, and the frequency distribution (or variance) of the failure probability can be evaluated
to separate the effects of aleatory and epistemic uncertainty. In practical applications, this requires a high numerical effort
or statistical approximations.

Alternatively, an imprecisely known probability distribution can be modeled by a family of all candidate probability
distributions which are compatible with available data. This is the idea of the theory of imprecise probabilities [41].
Dealing with a set of probability distributions is essentially different from a Bayesian approach. A practical way to
represent the distribution family is to use a probability bounding approach by specifying the lower and upper bounds of
the imprecise probability distribution. This corresponds to the use of an interval to represent an unknown but bounded
number. Consequently, a unique failure probability cannot be determined. Instead, the failure probability is obtained as an
interval whose width reflects the imprecision of the distribution model in the calculated reliability.

A popular uncertainty model using the probability bounding approach is the probability box (p-box for short) structure
[16]. A p-box is closely related to other set-based uncertainty models such as random sets, Dempster–Shafer evidence
theory and random intervals. In many cases, these uncertainty models can be converted into each other, and thus
considered to be equivalent [42,16,21,31,5]. Therefore, the methodology presented in this paper is also applicable to other
set-based uncertainty models.

Within the reliability analysis context, simulation-based methods have been suggested to propagate p-boxes (e.g.
[1,3,4,44]). Direct sampling of p-boxes requires a large number of samples to control the sampling uncertainty. The total
computational cost can be very high as each simulation may involve an expensive range-finding problem. The issue of
computational cost becomes more serious when the limit state function is only implicitly known through a computational
model. Another concept follows the idea of global optimization to directly identify the bounds of probabilistic results [30].
Although this concept is general and can be applied in association with variance-reduction methods (e.g. [45]), the
computations are still numerically demanding. There is some urgency for further developments towards efficient
methodologies for analysis with imprecise probabilities.

This study focuses on the reduction of sampling uncertainty with quasi-Monte Carlo technique. Quasi-MC method is
typically used for multidimensional numerical integration problems. It performs in a similar manner as the Monte Carlo
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