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a b s t r a c t

One of the main goals of time–frequency (TF) signal representations in non-stationary
array processing is to equip multi-antenna receivers with the ability to separate sources in
the TF domain prior to direction finding. This permits high-resolution direction-of-arrival
(DOA) estimation of individual sources and of more sources than sensors. In this paper, we
use linear decomposition of sensor data based on matching pursuit (MP). The leading
atoms of the MP, which capture most of the source TF signatures, can be different for
different sources and, as such, provide the desired source discrimination. The MP
coefficients with high signal-to-noise ratio (SNR) and corresponding to the leading
decomposition atoms are used to develop the MP-MUSIC DOA estimation for non-
stationary source signals. We demonstrate the source discriminatory capability of the
proposed technique using linear FM, nonlinear FM, and other non-stationary signals.
Further, we compare MP-MUSIC performance with conventional MUSIC and the time–
frequency MUSIC, which incorporates bilinear transforms.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

High-resolution direction finding of non-stationary
signals can exploit the time–frequency (TF) signatures of
the sources in the field of view to provide source dis-
crimination and increased signal-to-noise ratio (SNR) [1].
Both capabilities have been achieved within the spatial
time–frequency distribution (STFD) framework. This fra-
mework was applied to narrowband signals in [2,3] and
extended to wideband sources by Gershman et al. in [4–6].
The STFD framework applies a form of joint-variable signal
representations to expose hidden TF signatures character-
izing the data received by the antenna array. Signal
analysis in a single domain, whether time or frequency,
fails to reveal the local behavior of the signal and in

expressing its power distribution over both time and
frequency. On the other hand, bilinear transforms, such
as Cohen's class [7] of time–frequency distributions (TFD),
capture the instantaneous frequency (IF) laws underlying
the non-stationarity of the data.

The STFD matrix, in lieu of the covariance matrix,
permits the auto- and cross-TFDs of the sensor data to
retain the signal phase and, as such, embeds the sources'
direction-of-arrival (DOA) information. DOA estimation
approaches using subspace methods, such as MUSIC [8],
and incorporating the STFDs have been shown to improve
the performance over their covariance matrix counter-
parts, primarily because of their capability to successfully
discriminate among sources and exclude some from con-
sideration prior to subspace decomposition. Accordingly,
the STFD-based DOA approaches become attractive for
sources with close angular separations, but with distinc-
tive IFs [9].

In this paper, we provide an alternative to the STFD
framework which enjoys the same benefits of STFDs. We use

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/sigpro

Signal Processing

0165-1684/$ - see front matter & 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.sigpro.2013.03.016

n Corresponding author. Tel.: þ1 610 519 4544.
E-mail addresses: s_ghofrani@azad.ac.ir (S. Ghofrani),

moeness.amin@villanova.edu (M.G. Amin), yimin.zhang@villanova.edu,
yimin@ieee.org (Y.D. Zhang).

Signal Processing 93 (2013) 3466–3478

www.elsevier.com/locate/sigpro
www.elsevier.com/locate/sigpro
http://dx.doi.org/10.1016/j.sigpro.2013.03.016
http://dx.doi.org/10.1016/j.sigpro.2013.03.016
http://dx.doi.org/10.1016/j.sigpro.2013.03.016
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.sigpro.2013.03.016&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.sigpro.2013.03.016&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.sigpro.2013.03.016&domain=pdf
mailto:s_ghofrani@azad.ac.ir
mailto:moeness.amin@villanova.edu
mailto:yimin.zhang@villanova.edu
mailto:yimin@ieee.org
http://dx.doi.org/10.1016/j.sigpro.2013.03.016


linear, in lieu of quadratic, TF signal representations by
employing matching pursuit (MP) [10] in which the decom-
position coefficients bear the source TF localization profiles.
These coefficients act like the signal auto-terms in bilinear TF
transforms. However, unlike the bilinear STFD approach,
where the cross-sensor distribution is needed to capture
the phase changes across the array, the linear decomposition
of the data at each sensor using MP preserves the signal
phase. The MP-MUSIC is developed by forming the coeffi-
cient covariance matrix and then applying eigen-
decomposition for subspace estimation.

MP is an adaptive signal decomposition technique that
is energy conservative. While first introduced by using the
Gabor functions as atoms, MP has been extended to use
dictionaries consisting of any Gaussian envelopes with
arbitrary phase laws (e.g., constant, linear, cubic and
polynomial). Clearly, using atoms with more parameters
provides higher flexibility in matching the signals, but also
increases the computational cost. From DOA estimation
perspective, MP offers the same key advantages of STFD,
i.e., source discrimination and SNR enhancement. It is
applicable to a broad class of non-stationary signals, not
necessarily those characterized by their IFs. Further, unlike
the STFD, where TF points or regions of high power
concentrations need to be identified post distribution
computations through thresholding, MP automatically
and chronologically identifies atoms that capture these
regions according to their energy contributions. This
directly determines the best TF regions to be incorporated
in DOA estimation.

MP was used to estimate the source DOA in a manner
similar to the maximum likelihood (ML) method in [11–13].
In these approaches, DOA estimation is performed by
utilizing a large dictionary that includes steering vectors
for all possible signal arrivals. Although the algorithm
converges over few snapshots, the computational cost is
rather considerable. This procedure of applying MP for
steering vectors is entirely different from the one proposed
in this paper, where the source non-stationarity is
addressed by the MP decomposition in the temporal
domain, followed by subspace decomposition of the MP
coefficient covariance matrix for DOA estimation. Linear TF
decompositions, using the wavelet transform, have been
used for de-noising prior to DOA estimation in [14–17]. In
contrast to the wavelet approach, the proposed approach
incorporates the MP into DOA and uses the decomposi-
tion coefficients directly into signal and noise subspace
decompositions.

In this paper, we develop high-resolution DOA estima-
tion techniques of non-stationary narrowband signals
using MP, and demonstrate the proposed technique’s
source discriminatory capability and its robustness against
noise. A priori knowledge of the coarse source TF behavior,
if available, can aid in tailoring the atoms to a specific
problem. This knowledge can be gained, e.g., from the TFD
of the reference sensor or from the averaged TFDs across
the sensor array (e.g., [18]). In the absence of this knowl-
edge, the chirplet atoms can be adopted because of their
attractive TF concentration properties [19–22]. When
proper matching of atoms and signals occurs, each of the
leading atoms captures one signal, allowing DOA estimation

of a single source to be performed for each atom. The
consequence of using a general set of atoms, like chirplets,
in the absence of a priori information of the signals is two-
fold. First, more atoms are required to properly decompose
the signals and capture their energy. Second, some atoms
may overlap with two or more sources. These atoms
assume a similar role of cross-terms in the STFD framework
and may hinder source discrimination. In both cases, an
association procedure is performed to attempt to group the
atoms and the coefficients [23].

This paper is organized as follows. In Section 2, we
introduce the signal model, and review the conventional
MUSIC technique as well as the STFD concept. A short
overview of the MP decomposition is provided in Section 3.
In Section 4, we develop MP-MUSIC for DOA estimations.
It is shown that the MP coefficient covariance matrix can be
used as an alternative to the spatial covariance and STFD
matrices to formulate subspace-based DOA estimation
methods within the MP framework. The MP-MUSIC perfor-
mance is provided in Section 5. Section 6 presents simula-
tion results, and finally Section 7 concludes this paper.

The following notations are used in this paper. Boldface
lower-case letters (e.g., a) denote vectors, and boldface
upper-case letters (e.g., A) denote matrices. E½:� represents
the statistical mean operation. ð:Þn, ð:ÞT and ð:ÞH denote
complex conjugate, transpose and conjugate transpose,
respectively. δð:Þ denotes the Kronecker delta function,
and I is an identity matrix. In addition, CM�N denotes the
space of M � N matrices with complex entries. oa,b4 ¼
aTbn denotes the inner product of two vectors a and b, and
||.|| denotes the Frobenius norm of a vector.

2. Signal model

In this section, we introduce the signal model. For the
convenience of presentation, we briefly review the MUSIC
and the STFD concept [1,8].

2.1. Signal model

Assume K non-coherent narrow-band signal sources
impinging on an M-element with angles θk, k¼ 1, 2,:::, K .
The array output vector at time instant t, xðtÞ ¼ ½x1ðtÞ,
x2ðtÞ,:::,xMðtÞ�T , is expressed as

xðtÞ ¼ AsðtÞþnðtÞ, t ¼ 1, 2,:::, N ð1Þ
where N is the number of snapshots, sðtÞ ¼ ½s1ðtÞ, s2ðtÞ,:::,
sK ðtÞ�T is the source signal vector, and nðtÞ ¼ ½n1ðtÞ,
n2ðtÞ,:::,nMðtÞ�T is an additive noise vector whose elements
are modeled as stationary, spatially and temporally white
Gaussian, zero-mean complex random processes, indepen-
dent of the source signals, i.e., E½nðtþτÞnHðtÞ� ¼ s2nδðτÞI,
with s2n denoting the variance. In particular, when the
array is uniform linear, then the kth column of the steering
matrix A¼ ½aðθ1Þ,aðθ2Þ,:::,aðθK Þ� is expressed as aðθkÞ ¼
½1,ejωk ,:::,ejðM−1Þωk �T , where ωk ¼ 2πðd=λÞsinðθkÞ is the spatial
frequency of the kth signal, λ denotes the wavelength, and
d is the inter-element spacing.

The spatial covariance matrix of x(t) is defined as

Cxx ¼ E½xðtÞxHðtÞ� ¼ACssA
Hþs2nI, ð2Þ

S. Ghofrani et al. / Signal Processing 93 (2013) 3466–3478 3467



Download English Version:

https://daneshyari.com/en/article/561323

Download Persian Version:

https://daneshyari.com/article/561323

Daneshyari.com

https://daneshyari.com/en/article/561323
https://daneshyari.com/article/561323
https://daneshyari.com

