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a b s t r a c t

A symmetric self-Hilbertian filter is a product filter that can be used to construct

orthonormal Hilbert-pair of wavelets for the dual-tree complex wavelet transform.

Previously reported techniques for its design does not allow control of the filter’s

frequency response sharpness. The Zero-Pinning (ZP) technique is a simple and versatile

way to design orthonormal wavelet filters. ZP allows the shaping of the frequency

response of the wavelet filter by strategically pinning some of the zeros of the

parametric Bernstein polynomial. The non-zero Bernstein parameters, ai’s, are the

free-parameters and are constrained in number to be twice the number of pinned zeros

in ZP. An extension to ZP is presented here where the number of free-parameters is

greater than twice the number of pinned zeros. This paper will show how the extended

ZP can be used to the design of Hilbert pairs with the ability to shape the filter response.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

The critically sampled (non-redundant) Discrete
Wavelet Transform (DWT) is a powerful signal processing
tool and has found success in many applications like
image compression [1], signal denoising [2] and water-
marking [3]. Despite its many success the DWT is not
without disadvantages and the most important one is that
it is shift-invariant due to the multirate nature of the
transform. This has lead researchers to consider redun-
dant transforms such as the shift-invariant Discrete
Wavelet Transform (SI-DWT) [4] and the higher-density
wavelet transform [5]. The dual-tree complex wavelet
transform (DT-CWT) of Kingsbury [6] however has
emerged recently as one of the most popular redundant
transform. The DT-CWT has the advantages of being
approximately shift-invariant and providing directional
selectivity in multidimensions [7]. The DT-CWT can be
implemented efficiently without a significant increase of
complexity compared to the critically sampled DWT and
complex arithmetic is not needed. The DT-CWT has showed

it superiority over the DWT in many applications like
denoising [2] and image modeling [8].

The DT-CWT is based on a pair of filter banks whose
equivalent wavelet functions are Hilbert transforms of
each others:

Cg
ðoÞ ¼

�jCh
ðoÞ for o40

jCh
ðoÞ for oo0

(
ð1Þ

where Ch
ðoÞ and Cg

ðoÞ are respectively the Fourier
transforms of the wavelet functions ch

ðtÞ and cg
ðtÞ. This

paper will focus on orthonormal wavelets and the corre-
sponding conjugate quadrature filter (CQF) banks. The
corresponding low-pass filter is denoted as HhðzÞ and
HgðzÞ. The necessary and sufficient condition for the
wavelets from a pair of CQF ðHhðzÞ,HgðzÞÞ to satisfy (1) is

HgðejoÞ ¼ e�jo=2ej2 doHhðejoÞ �prorp ð2Þ

where d is an integer. The half sample delay was first
discussed in [9] and subsequently generalized in [10,11]
to include possible arbitrary shifts between filters. The
filter HhðzÞ is a CQF as the corresponding product filter
MðzÞ �HhðzÞHhðz�1Þ is halfband, i.e. MðzÞþMð�zÞ ¼ 1. The
product filter frequency response must be non-negative:
MðejoÞZ0. The same statement applies for HgðzÞ.
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Equation (2) can only be approximated with FIR filters.
Therefore the Hilbert transform relationship (1) can only
be approximated with FIR filters. The filters HhðzÞ and
HgðzÞ will be referred to as the real and imaginary CQF

respectively. For convenience it is assumed that the
impulse response support of the CQF (must be of even
length) is almost-centered-at-the-origin (ACO). An ACO
filter has the support n 2 ½�ðL�1Þ,L�.

The class of Hilbert-pairs considered here has CQFs
that are time-reversed versions of each other

HgðejoÞ ¼ e�joHhðe�joÞ ð3Þ

The delay e�jo is needed to ensure that HgðejoÞ is also ACO
so that both filters are aligned. The CQFs are different
spectral factors from the same product filter which is
Symmetric-Self-Hilbertian (SSH) [12]:

Definition 1. A SSH filter is a product filter M(z) with the
following property: there exist at least two spectral
factors, denoted by HhðzÞ and HgðzÞ that satisfy (3) with
the corresponding complex wavelet spectrum satisfying

CA
ðoÞ �Ch

ðoÞþ jCg
ðoÞ � 0 for oo0

i.e. the complex wavelet cA
ðtÞ �ch

ðtÞþ jcg
ðtÞ is approxi-

mately analytic.

Measures of approximation error can be defined as
[12]

E1 �
maxoo09C

A
ðoÞ9

maxo409CA
ðoÞ9

, E2 �

R 0
�1

9CA
ðoÞ92

doR1
0 9CA

ðoÞ92
do

E1 and E2 measure the peak error and negative frequency
energy respectively and the lower the values, the better
the analytic quality. This definition of a SSH filter was first
proposed in [12] and is also the one adopted in [13]. It
does not specify the degree of approximation but is
sufficient from a practical engineering perspective (and
is sufficient for the discussions in this paper). To be more
mathematically precise one can define a SSH(e) filter to be
a product filter satisfying the conditions above and having
E1rE (or E2rE). The parameter e precisely specifies the
degree of approximation.

The SSH filters in [12] yielded wavelets with almost
maximum vanishing moments (VM). The basic idea in
[12] was to introduce one degree of freedom in the
product filter which is then optimized with respect to
the analytic quality. Only the spectral factor with an
approximately linear phase response was considered in
[12]. Extensions that considered all spectral factors and
allowing two degrees of freedom were proposed in [13]
which yielded better analytic quality. However there is no
control of the frequency response sharpness in [12,13]
and all the filters in [12,13] have reduced sharpness
compared to the maximum VMs filters of Daubechies.
This paper extends the works in [12,13] to allow the
design of sharper filters. The technique proposed here,
called Extended-Zero-Pinning (EZP), is based on an exten-
sion of the Zero-Pinning (ZP) technique [14]. The wavelet
pairs here are mirror image of each other, i.e.
cg
ðtÞ ¼ch

ðT�tÞ (where T is a constant), and the complex
wavelet has the following symmetry cA

ðtÞ ¼ ð�jcA
ð�tÞÞn,

i.e. the envelope 9cA
ðtÞ9 is mirror symmetric. There has

also been other proposed design techniques for Hilbert-
pairs but the wavelets do not have such symmetry.
Furthermore in most previous works, for orthonormal
pairs, all the design effort is usually focused on achieving
the best approximation to (1). Using the EZP technique, it
is relatively easy to explicitly include other criteria such
as transition band sharpness and stopband ripple ampli-
tude in the design. Reviews of earlier design techniques
can be found in [7] and [15]. More recent techniques
appear in [16–20]. In [20] the original ZP (without exten-
sion) is used to design minimum phase CQFs yielding
highly non-symmetric wavelets. Most of the reported
techniques deals with FIR filters with real coefficients
but there has also been some techniques for (real coeffi-
cients) IIR filters [21,22] and complex coefficients FIR
filters [23] (which require complex arithmetic for their
implementation).

An outline of the paper is as follows. Section 2 presents
the principle behind EZP after a brief review of the
Parametric Bernstein Polynomial. The important issue of
non-negativity is also discussed here. The optimization
procedure for designing Hilbert-pairs using EZP is pre-
sented in Section 3. Two methods to speed up the
optimization are presented here. Design examples are
presented in Section 4 where relevant discussions are
also found. The paper concludes with some comments in
Section 5.

2. Extended-zero-pinning

The design of the product filter M(z) is achieved
through the use of the Parametric Bernstein Polynomial
(PBP) which was introduced by Caglar and Akansu in [24].
The PBP can be written as

BðxÞ ¼ KðxÞ�
XðN�1Þ=2

l ¼ 0

klðxÞal ð4Þ

where

KðxÞ �
XðN�1Þ=2

i ¼ 0

N

i

� �
xið1�xÞN�i

and

klðxÞ �
N

l

� �
½xlð1�xÞN�l

�xN�lð1�xÞl�

The product filter can obtained as MðzÞ ¼ Bð� 1
4 zð1�z�1Þ

2
Þ

and it can be easily verified that M(z) is halfband
(MðzÞþMð�zÞ ¼ 1), i.e. perfect reconstruction is structu-
rally imposed. Furthermore it can also be shown [24] that
if al ¼ 0 for l¼ 0, . . . ,L, then the CQF H(z) has (Lþ1) zeros
at z¼�1, i.e. the wavelet has (Lþ1) VMs. The structural
halfband and VM properties are the advantages of PBP in
filter bank design. The set of non-zero Bernstein para-
meters: anz � ½aLþ1, . . . ,aðN�1Þ=2�

T can be regarded as
design parameters. The degrees of freedom available in
the design process are

df � dimðanzÞ ¼ ðN�1Þ=2�L:
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