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a b s t r a c t

This paper investigates the usage of permutation entropy for working status character-

ization of rotary machines. As a statistical measure, the permutation entropy describes

complexity of a time series or signal measured on a physical system through phase

space reconstruction, and takes into account non-linear behavior of the time series, as

often seen in vibration signals of rotary machines. Thus it can be served as a viable tool

for detecting dynamic changes of the machine working status. The effect of embedded

dimension and time delay on calculation of the permutation entropy value has been

studied, and the validity of the permutation entropy for detecting dynamic change of a

physical system is studied through a well known non-linear system, the Logistic Map.

Comparison with other complexity measures using a numerically formulated signal has

also been investigated. Experimental results on bearing vibration analysis have then

confirmed that the permutation entropy provides an effective measure for monitoring

the working status of rolling bearings.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

To evaluate the working status of rotary machines, vibration signals generated from these machines have often been
measured and then analyzed in detail [1–3]. As fault information of rotary machines is mostly reflected by singular points
of abrupt changing signals, detecting dynamic change of the vibration signals in time is important for early fault
identification [4]. During the process of machine operations, some phenomena, such as strike, velocity chopping, structure
transmutation, and friction, may occur. These phenomena cause the vibration signals generated from the machines to be
non-stationary and nonlinear. As a result, traditional linear methods may not effectively detect dynamic change of those
vibration signals. With the development of nonlinear dynamic theory, a number of methods have been presented to detect
such changes. These include nonlinear cross prediction analysis [5], lyapunov exponent [6], correlation dimensions [7], and
symbolic dynamics [8]. Most of these methods are based on quantifying certain aspects of the nearest neighbors in phase
space, and, as a result, are computationally expensive.

The Complexity Measure, in comparison, is computationally more efficient [9]. The complexity of a signal can be
described by the Lempel–Ziv Complexity (LZC) [10,11], Approximate Entropy (ApEn) [12,13], and Permutation Entropy
(PE) [14]. The Lempel–Ziv Complexity indicates the degree of regularity of a time series in one dimension, and calculation
of complexity values on vibration signals measured from a large rotating machine [15] has shown that the inception and
growth of faults in the machine could be correlated with changes in the LZC value. Another study on defects detection in
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rolling bearings has established quantitative relationship between the LZC value and the defect size, and consequently the
defect severity level [16]. Approximate Entropy, on the other hand, expresses the regularity of a time series in multiple
dimensions, and contains more time-related information [13]. In a study on turbo generator, it was found that the ApEn
values have increased significantly after looseness of the bearing bushing was identified, when compared with normal
operation conditions [17].

Different from Lempel–Ziv Complexity and Approximate Entropy, Bandt and Pompe presented Permutation Entropy, a
parameter of average entropy, to describe the complexity of a time series [14]. Because the permutation entropy makes
only use of the order of the values, it is robust under non-linear distortion of the signal, and is also computationally
efficient [18]. It has been successfully applied to a number of applications. For example, permutation entropy has shown to
be effective in detecting vigilance changes and preictal states from scalp EEG [19] and tracking transient dynamics of EEG
recordings [20]. It has also provided an advantageous complexity estimation to improve effectiveness on fetal behavior
states classification [21]. For financial time series analysis, the permutation entropy has been used together with symbolic
dynamics to perform a non-parametric independent test [22]. In the field of manufacturing, permutation entropy has been
used for online chatter detection in turning process [23], and tool flute breakage detection in end milling [24]. It has been
verified that compared with other parameters, such as Lyapunov exponent and fractal dimensions, permutation entropy
can detect dynamic change in complex systems more effectively [25,26] . Furthermore, an overview on both theory and
applications of permutation entropy is introduced in [27] in detail, and with more and more researchers have devoted to
this topic, more theoretical insights on permutation entropy can be seen in [28–30].

Motivated by these prior efforts, this paper investigates the utility of the Permutation Entropy for detecting dynamic
change in vibration signals of rotary machine/machine components, with specific application in rolling bearings. After
introducing the theoretical background of the permutation entropy, its validity for detecting dynamic changes, the effect of
embedded dimension and time delay on the calculation of PE, and computational cost, are studied. Comparison with other
complexity measures are then conducted using a numerically formulated signal. After that, the effectivenss of the
permutation entropy on characterizing working status of rolling bearings is experimentally verified.

2. Theoretical framework of permutation entropy

The mathematical theorem of the permutation entropy was described in detail in [14,18,31]. According to the
Takens–Maine theorem, the phase space of a time series {x(i), i¼1,2,y,N} can be reconstructed as

Xð1Þ ¼ fxð1Þ,xð1þtÞ,. . .,xð1þðm�1ÞtÞg
^

XðiÞ ¼ fxðiÞ,xðiþtÞ,. . .,xðiþðm�1Þtg
^

XðN�ðm�1ÞtÞ ¼ fxðN�ðm�1ÞtÞ,xðN�ðm�2ÞtÞ,. . .,xðNÞg

8>>>>>><
>>>>>>:

ð1Þ

where m is the embedded dimension and t is the time delay. As described in [31] by Cao et al., the m number of real values
contained in each X(i) can be arranged in an increasing order as

fxðiþðj1�1ÞtÞrxðiþðj2�1ÞtÞr . . .rxðiþðjm�1ÞtÞg ð2Þ

If there exist two or more elements in X(i) that have the same value, e.g. x(iþ(j1�1)t)¼x(iþ(j2�1)t), their original
positions can be sorted such that for j1r j2, x(iþ(j1�1)t)rx(iþ(j2�1)t) can be written. Accordingly, any vector X(i) can be
mapped onto a group of symbols as [31]

SðlÞ ¼ ðj1,j2,. . .,jmÞ ð3Þ

where l¼ 1,2,. . .,k and krm! (m! is the largest number of distinct symbols). S(l) is one of the m! symbol permutations,
which is mapped onto the m number symbols ðj1,j2,. . .,jmÞ in m-dimensional embedding space. If P1,P2,y,Pk, are used to
denote the probability distribution of each symbol sequences, respectively, and

Pk
l ¼ 1 Pl ¼ 1, then the permutation entropy

of order m for the time series {x(i), i¼1,2,y,N} can be defined as the Shannon entropy for the k symbol sequences as

HPðmÞ ¼�
Xk

l

Pl lnPl ð4Þ

The maximum value of Hp(m) can be obtained as ln(m!) when all the symbol sequences have the same probability
distribution as Pl¼1/m!. Therefore, the permutation entropy of order m can be normalized as [31]

0rHP ¼HP=lnðm!Þr1 ð5Þ

For simplicity, Hp is used to replace Hp(m) in the following sections. The value of HP can represent the randomicity of the
time series fxðiÞ,i¼ 1,2,. . .,Ng, and it describes local order structure of the time series. The smallest possible value of Hp is
zero, which means that the time series is very regular [14]. The largest possible value of Hp is 1, which is realized when all
permutations have equal probability, as is in the case of white noise. The smaller the value of Hp, the more regular the time
series is. The change of Hp can reflect and magnify the subtile transformation of the time series [14].
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