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a b s t r a c t

In this paper, a penalty function is designed and used in the computation of multitapers

which correspond to the Wigner and Choi–Williams distributions. The resulting multi-

taper spectrogram will approximately fulfill the concentration of the distribution but will

additionally suppress the cross-terms outside a predetermined Doppler–lag bandwidth.

The specific region as well as the amount of cross-term suppression is determined by

parameters of the penalty function. The proposed method uses a limited number of

multitapers which results in computationally efficient calculations. The time–frequency

concentration and resolution of the proposed method and the original distribution are

compared and the performance for signals disturbed by white noise is also evaluated.

Estimation of event related potentials disturbed by EEG exemplify the use of the method.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the area of time–frequency analysis, a large number
of time–frequency distributions have been proposed for
different applications. From time–frequency concentration
viewpoint, the Wigner distribution is the optimal choice.
However, the so-called cross-terms disturbing the auto-
terms from multi-component signals are a major draw-
back. Today, a number of other time–frequency distribu-
tions exist with different ability to suppress the resulting
cross-terms from the Wigner distribution, e.g., [1–4].

A computationally efficient algorithm that corresponds
to a time–frequency distribution can be found using a
multitaper spectrogram, especially if the number of aver-
aged spectrograms can be small and also by using sym-
metry of matrices [5]. This motivates the implementation
of time–frequency kernels as multitaper spectrograms.

The corresponding eigenvalues and eigenvectors of the
rotated time-lag kernel of a specific distribution are used as
weights and tapers in the multitaper spectrogram [6]. The
phrase multitaper was originally introduced by Thomson,
for the case of stationary processes with smooth spectra
[7]. One of the advantages of the Thomson multitapers is
strong sidelobe suppression outside a predetermined fre-
quency interval. Other methods have been proposed for the
multitaper spectrum estimate of stationary processes
where the tapers also fulfil the criterion of strong sidelobe
suppression [8,9]. Multitaper decompositions have been
analyzed from several aspects, for existing distributions,
e.g., [10,11], and new multitaper techniques for non-
stationary signal analysis have also been proposed, e.g.,
[12–15]. The aspect of time–frequency localization and
orthogonality in the time–frequency domain (in contrast to
only considering the frequency domain) was noted by [16]
and made the Hermite functions to become often used as
multitapers for spectrogram estimation of non-stationary
processes [14,17–19].

In some contributions, the weighting of the different
multitaper spectrograms is optimized for fixed tapers
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(usually the Hermite functions) [14,20]. In these cases a
model spectrum of data is needed for the optimization. In
many practical cases, the spectrum of the signal to be
estimated is unknown, but more vague information could
be available, e.g., approximate concentration and resolu-
tion of time–frequency components.

Another important case is signals disturbed by additive
noise, where it is notable that orthogonal multitapers are
optimal from a (white) noise variance reduction aspect.
The theoretical results for computing the bias and variance
of the Wigner distribution for the case of additive noise
are given in [21] and a minimum-variance kernel is
obtained in [22].

Therefore, in this paper, the aim is to find the multi-
tapers corresponding to the Wigner and Choi–Williams
distributions, as these are often utilized and are known to
have an appropriate concentration, but often give cross-
terms between different time–frequency components. By
incorporating a suppression level of disturbances outside a
predefined Doppler–lag bandwidth, the concentration is
retained but the cross-terms are suppressed. A penalty
function is proposed and a generalized eigenvalue problem
is solved to find the multitapers and weights for the
spectrogram calculation. One of the main advantages of
the approach is that only some general ideas of concentra-
tion and resolution of components are needed. Using this
information together with a pre-defined suppression level
of cross-terms define the penalty function. The resulting
multitaper spectrogram includes just a few averages and
the computed tapers have the orthogonality property that
guarantee uncorrelated multitaper spectrograms, which
affects the reduction of white noise disturbance of the
estimate.

An initial idea was presented in [23] using another
penalty function and limiting the Thomson multitaper
kernel. In Section 2 the spectrogram decomposition of
time–frequency distributions is described. The penalty
matrix that is used to suppress the cross-terms are pre-
sented in Section 3 followed by examples of multitapers
and weights. An evaluation of the proposed methods are
given in Section 4, and in Section 5 examples of estimation
of event-related potentials from the brain are shown.
Section 6 concludes the paper.

2. Spectrogram decomposition of time–frequency
distributions

The connection between a multitaper spectrogram and
a smoothed Wigner distribution is found using the follow-
ing approach. The multitaper spectrogram is defined as
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where xðtÞ is the signal, ak, k¼ 1 . . .K , are the weights
and hkðtÞ, k¼ 1 . . .K , are the multitaper functions.

With t1 ¼ tuþt=2 and t2 ¼ tu�t=2,
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We identify the instantaneous autocorrelation function as
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and the time-lag kernel as
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giving the quadratic class of time–frequency distributions,
e.g., [24, Chapter 3], as
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and if the kernel rrotðt1,t2Þ satisfies the Hermitian property

rrotðt1,t2Þ ¼ ðrrotðt2,t1ÞÞ
�

then solving the integralZ
rrotðt1,t2Þqðt1Þ dt1 ¼ lqðt2Þ ð7Þ

results in eigenvalues lk and eigenfunctions qkðtÞ, which
form a complete set that can be used as weights, ak, and
multitaper functions, hkðtÞ ¼ qkðtÞ, k¼ 1 . . .K , in Eq. (1).

3. Penalty matrices and multitapers

In [9], a frequency penalty function was used to sup-
press the sidelobes of the mean squared error optimal
multitapers for the case of stationary processes with
peaked spectrum. A similar idea is proposed here with a
penalty function
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The covariance penalty function is defined as

rPðtÞ ¼ P � dðtÞ�ðP�1Þ � DnpsincðDnptÞ, ð9Þ

with sincðxÞ ¼ sinðpxÞ=ðpxÞ, where the corresponding spec-
tral density penalty function is
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The definition of the spectral density penalty function is
similar to the one in the stationary case in [9]. This
frequency penalty function, that suppress a factor of P

outside a predetermined intervalDnp, is combined with the
block structure that suppress outside the interval Dtp.
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