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This paper introduces methods for probabilistic uncertainty analysis of a frequency response

function (FRF) of a structure obtained via a finite element (FE) model. The methods are

applicable to computationally expensive FE models, making use of a Bayesian metamodel

known as an emulator. The emulator produces fast predictions of the FE model output, but

also accounts for the additional uncertainty induced by only having a limited number of

model evaluations. Two approaches to the probabilistic uncertainty analysis of FRFs are

developed. The first considers the uncertainty in the response at discrete frequencies, giving

pointwise uncertainty intervals. The second considers the uncertainty in an entire FRF

across a frequency range, giving an uncertainty envelope function. The methods are

demonstrated and compared to alternative approaches in a practical case study.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Finite element (FE) modelling is perhaps the most widely used computational tool in the analysis of structural
vibrations, particularly for the prediction of frequency response functions (FRFs). In recent years there has been a growing
level of interest in how different types of uncertainty can be handled with this modelling approach. These uncertainties
can be inherent to the model itself (for example due to assumptions regarding the boundary conditions), or alternatively
they could arise due to unknown values of physical parameters (for example component geometry or material properties).
In the latter case, this lack of knowledge could be attributed to variation between nominally identical components
(i.e. variability), or uncertainty during the design process regarding the final choice of dimensions or material.

There has long been interest in how uncertainty propagates through FE models. The method with the greatest pedigree
is the stochastic finite element (SFE) method [1]; this is a probabilistic method. In the general SFE formulation, the material
properties across the structure can be specified as a random field. In a manner similar to the discretisation of the structure
into finite elements, the random field is discretised into a denumerable set of random variables using the Karhunen–Loeve
expansion, which is then truncated at some finite order. The results from the FE model are then expressed as a mean value
supplemented by an expansion in terms of the random variables, allowing statistics of the quantity of interest to be
computed. In the last decade, interest has grown in possibilistic approaches, such as a fuzzy approach to FE analysis and
computation of modal quantities [2,3]. More recent work has considered component mode synthesis as a framework for
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investigating both probabilistic and possibilistic uncertainties [4], and using possibilistic techniques based upon fuzzy
numbers [5]. A ‘fuzzy FE’ approach is also developed in [6] and applied to a variety of case studies including the Garteur
benchmark FE problem—a small scale aircraft model developed for assessing ground vibration test techniques.

A common issue when trying to propagate uncertain parameters through complex FE models is that the deterministic
nature of the modelling approach leads to many model evaluations being performed, each for a different configuration of
the uncertain inputs. In probabilistic modelling, this results in Monte Carlo simulations, whilst in possibilistic modelling, the
repeated model evaluations can be used to generate fuzzy numbers representing the uncertainty in the model’s response.

This paper focusses on a probabilistic method for uncertainty analysis of FE models, using a statistical metamodel, or
emulator, to reduce the number of FE model evaluations required, and hence reduce the computational cost. The
remainder of the paper is organised as follows. First, the probabilistic uncertainty analysis problem is formulated, before
introducing the concept of the emulator. Next, the use of the emulator for uncertainty analysis is described using a simple
graphical example. The uncertainty analysis of FRFs that are predicted from FE models is then considered. This approach is
then applied to a numerical case study based upon the Garteur testbed. Following a discussion, conclusions are drawn
regarding the application of this modelling approach to FE modelling problems in structural dynamics.

2. Probabilistic uncertainty analysis of FE models

Consider a deterministic FE model evaluated at a particular degree of freedom. It takes a set of p input parameters, denoted
as x¼ ðx1, . . . ,xpÞ

T , and returns a set of outputs that consist of pairs of modal parameters. A typical FE analysis considers a
subset of the modal parameters, which we denote fðm̂i,k̂iÞ : i¼ 1, . . .nmodesg, where m̂i are the modal masses and k̂i are the
modal stiffnesses. The FE model is deterministic, so repeated runs with the same configuration of input parameters will return
the same outputs, and we may represent it as a function y¼ gðxÞ, where y¼ ðm̂1,k̂1,m̂2,k̂2, . . . ,m̂nmodes

,k̂nmodes
Þ
T .

In the probabilistic uncertainty analysis of a deterministic computer model, we consider the values of the uncertain
input parameters to be a multivariate random variable X. As a result, the output of the model is also a multivariate random
variable, which we denote Y ¼ gðXÞ. The first step in the analysis is to quantify the uncertainty in X by specifying a
probability distribution FðxÞ. This distribution may be constructed using data, or by eliciting expert opinion [7], or a
combination of both. Our aim is then to propagate the uncertainty in X through the computer model in order to
characterise the distribution of Y, which is known as the uncertainty distribution.

A straightforward solution to this problem is to use a Monte Carlo procedure. In this we draw a large sample fx1, . . . ,xNg from
the input distribution FðxÞ and run the model at each sampled input configuration xi. The result is a sample of the outputs
fy1, . . . ,yNg, from which we can estimate any summary of the uncertainty distribution such as the mean, the variance, or a
particular quantile, using the corresponding summary statistic. For example, the mean of the uncertainty distribution may be
estimated using the sample mean of fy1, . . . ,yNg. For a general summary, denoted S(Y), the precision of the estimate is
determined by the sample size N, and standard techniques are available for estimating the Monte Carlo error in the estimate [8].

When we perform an uncertainty analysis of an FE model of a structure, characterising the uncertainty distribution of
the FE model outputs (i.e. the modal parameters) is often only an interim step. In many cases, we are ultimately interested
in quantifying the uncertainty in the corresponding FRF of the modelled structure. According to the concept of modal
superposition, the FRF of the undamped structure is calculated as

Gðo; yÞ ¼
Xnmodes

i ¼ 1

1

k̂i�o2m̂i

: ð1Þ

Since the modal parameters are uncertain, the FRF at a particular frequency o is itself a random variable, which we denote
Go. Given the Monte Carlo sample of the modal parameters, we may obtain a sample from the distribution of the FRF at o
by simply plugging the sampled modal parameters into Eq. (1). This gives us a sample fGðo;y1Þ, . . . ,Gðo; yNÞg from which
we may obtain any summary of the FRF uncertainty distribution, SðGoÞ.

In the next section, an alternative approach is described based upon the use of an emulator. However, at this stage it is
useful to briefly mention the practical relevance of Eq. (1). Real structures possess damping, such that the modal solution
involves an imaginary term. Nevertheless, most FE solutions do not consider structural damping, and so any uncertainty in
the damping does not directly influence the problem of uncertainty propagation in the FE analysis. Another aspect of
Eq. (1) is that there are more generalised modal solutions that involve mass-normalised modes and modal constants,
rather than mass and stiffness terms. Furthermore, uncertainty can cause the density functions for the natural frequencies
to overlap and give a finite probability that mode i will appear at a higher frequency than mode iþ1. This means that the
emulator cannot distinguish between individual modes based upon their natural frequency. These issues will not be
considered in the present study, since the intention here is to demonstrate that multivariate emulators can be applied to
the uncertain FE problem in its simplest form, without introducing additional levels of complexity.

3. Emulators

Monte Carlo uncertainty analysis requires the model to be run at many input configurations in order to make accurate
inference about the uncertainty distribution, and the number of runs required increases exponentially with the number of
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