Accepted Manuscript

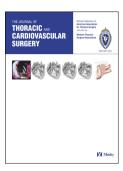
The saturation of novel means to alleviate ischemia-reperfusion injury?

Ari A. Mennander, MD PhD

PII: S0022-5223(16)31378-2

DOI: 10.1016/j.jtcvs.2016.10.007

Reference: YMTC 10938


To appear in: The Journal of Thoracic and Cardiovascular Surgery

Received Date: 9 October 2016

Accepted Date: 11 October 2016

Please cite this article as: Mennander AA, The saturation of novel means to alleviate ischemia-reperfusion injury?, *The Journal of Thoracic and Cardiovascular Surgery* (2016), doi: 10.1016/j.jtcvs.2016.10.007.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

The saturation of novel means to alleviate ischemia-reperfusion injury?

Ari A. Mennander, MD PhD

From Tampere University Heart Hospital, Tampere Finland

Disclosures: Author has nothing to disclose with regard to commercial support.

Address for reprints: Ari A. Mennander, MD PhD, Tampere University Heart Hospital, SDSKIR,

PL 2000, Tampere Finland (E-mail: ari.mennander@sydansairaala.fi).

Ischemia-reperfusion induced lung injury (IRI) is a complex clinical scenario including increased vascular permeability, lung edema and neutrophil sequestration, all of which determine the outcome of the patient after lung surgery. IRI has extensively been studied, and several molecular pathways are presented as among the most significant target of choice to alleviate detrimental outcome due to IRI. The clinician is drowned by pharmacological novelties, but occasionally, consistent experimental results may light-up a vanishing horizon of optimism in adopting a pragmatic solution to act against IRI.

In their manuscript "Inhibition of Na-K-Cl co-transporter isoform 1 reduces ischemia-reperfusion induced lung injury", Lan et al endorses yet another novel means to alleviate IRI based on an invitro but in-situ model using the lungs of the mouse (1). The epithelial activity of sodium-potassium-chloride co-transporter (NKCC) regulates lung tissue fluid trafficking and its role during IRI is investigated using transgenic mice with increased (WNK4) or reduced (SPAK -/-) NKCC activity. For control, the lungs of the wild type mouse and bumetanide, an NKCC inhibitor, were studied during IRI. The authors found that the NKCC-pathway participates in aggravating IRI. IRI

Download English Version:

https://daneshyari.com/en/article/5616473

Download Persian Version:

https://daneshyari.com/article/5616473

<u>Daneshyari.com</u>