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a b s t r a c t

The classical bispectrum based tests for linearity of time series are based on Gaussian

asymptotics and a suboptimal smoothing in the bispectral domain. We show that the

resulting classical tests may lead to vastly incorrect significance levels for non-Gaussian

time series. This implies that a non-Gaussian linear time series may incorrectly be

classified as non-linear. The purpose of this paper is to propose simple yet accurate tests

for Gaussianity and linearity. The improved tests are derived through: (1) an optimal

hexagonal smoothing in the bispectral domain, (2) the construction of simple and

intuitive bispectrum based test statistics, and (3) determination of correct significance

levels through a new skewness preserving scheme for linear surrogate data. The

superiority of the proposed tests is demonstrated through extensive Monte Carlo

simulations using relevant synthetic data.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

The linear Gaussian model has dominated time series
analysis and modeling for decades [1–3]. However, the
analysis of real-world data often reveals an underlying
non-Gaussian and/or non-linear structure of the time
series under scrutiny [4–6]. When dealing with time
series data of unknown structure, a natural first step is to
classify the data as accurately as possible. Thereafter,
modeling, detailed analysis and interpretation may take
place. The aim of the present paper is to suggest and
demonstrate accurate and useful tests based on carefully
constructed surrogate data, to aid in the classification of
non-trivial time series data.

The classical statistical tests for non-Gaussianity and
non-linearity [7,8] are based on the bispectrum [9] of the
time series. Various classification statistics were com-
pared in [10]. Alternative tests for non-linearity are, e.g.,
Ramsey’s mis-specification test [11], White’s neural net-
work test [12], Paluš’ information-theoretic redundancy

approach [13] and the correlation dimension approach by
Brock et al. [14]. Several tests were reviewed and
compared in [15], and in [16], the authors suggested the
use of bootstrapped residuals for Hinich’s classical
asymptotic test.

In this paper, we will concentrate on the classical tests
by Hinich [8]. We will briefly review the estimation of the
required power and bispectral densities, and point out
certain severe statistical problems with the classical tests
in their original form. In particular, Hinich’s linearity test
[8] does not provide the correct false alarm rate, and the
suggested improvement in [16] does not necessarily
correct the false alarm rate. Instead, it introduces further
problems since the null hypothesis of the Gaussianity test
is not fulfilled.

In the approach presented in this paper, we will
advocate the use of carefully designed surrogate data to
improve the classical tests so that their basic structure
remains unchanged, while their statistical performance
approaches their theoretical limit. The correct significance
levels and thresholds can readily be found by means of the
proposed surrogate data generator, also for the classical
tests. Finally, we propose deceptively simple and intuitive
test statistics for Gaussianity and linearity based on the
skewness function. The proposed tests outperform the
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classical tests in our extensive Monte Carlo simulations,
and it clearly demonstrates the potential of the method of
surrogates for practical data analysis.

The paper is organized as follows. The skewness
function is defined and discussed in Section 2 as the
central quantity for bispectrum based tests for non-
Gaussianity and non-linearity. In Section 3 we review
the classical asymptotical statistical hypothesis tests and
reveal their problems. In Section 4 we present improved
estimators for the skewness function and introduce non-
Gaussian linear surrogate data for non-linear hypothesis
tests. Original and improved tests are compared with
numerical example in Section 5, before we summarize our
findings and conclusions in Section 6.

2. The skewness function

2.1. Definitions

Assume the existence of a stationary real-valued
discrete time zero-mean random process ~x½n�, for n 2 Z.
The variance and skewness coefficient of this time series is
defined as s2 ¼ Ef~x2

½n�g and g ¼ Ef~x3
½n�g=ðs2Þ

3=2, respec-
tively, where Ef�g denotes the expectation operator.

The basic quantity arising in the classical tests for
Gaussianity and linearity is the complex valued skewness
function [9]

Gðf 1; f 2Þ ¼
S3ðf 1; f 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2ðf 1ÞS2ðf 2ÞS2ðf 1 þ f 2Þ
p , (1)

where the power spectrum S2ðf Þ is defined by

S2ðf Þ ¼
X1
t¼�1

R2½t� expð�j2pftÞ, (2)

where R2½t� ¼ Ef~x½n�~x½n� t�g, and the bispectrum S3ðf 1; f 2Þ

is defined by

S3ðf 1; f 2Þ ¼
X1

t1¼�1

X1
t2¼�1

R3½t1; t2� exp½�j2pðf 1t1 þ f 2t2Þ�,

(3)

where R3½t1; t2� ¼ Ef~x½n�~x½n� t1�~x½n� t2�g. For bispectrum
based tests for Gaussianity and linearity the bifrequency
region of interest is known as the principal domain (PD) of
bispectral estimation [7,8,17], defined by the triangular
region defined by the two inequalities 0pf 1pf 2p1=2 and
2f 1 þ f 2p1.

Based on the skewness function, one can construct
hypothesis tests for Gaussianity and linearity [7,8]. The
reason is that theoretically, the skewness function of a
Gaussian time series is identically zero everywhere, while
the skewness function of a non-Gaussian linear times
series has a constant non-zero magnitude [9]. A non-
linear time series, on the other hand, exhibits a skewness
function with bifrequency dependent magnitude. Since a
Gaussian time series has a zero valued skewness function,
we first have to test for Gaussianity. If the time series is
found to be non-Gaussian, we can proceed to a second test
to decide whether the time series follows a non-Gaussian
linear model.

2.2. Estimators

In practice, only a finite length portion of a single
realization of the process may be available, x½n�;n ¼

0;1; . . . ;N � 1. Obviously, one will have to deal with
estimates of the power spectrum S2ðf Þ and the bispectrum
S3ðf 1; f 2Þ. Hence, the sample version of the skewness
function takes the form

bG½k; l� ¼ bS3½k; l�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibS2½k�bS2½l�bS2½kþ l�

q , (4)

where bS2½k� is a power spectrum estimate, bS3½k; l� is a
bispectrum estimate and k and l are discrete frequency
indices. The statistical properties of the estimated skew-
ness function come directly into play when choosing
thresholds and confidence levels for the Gaussianity and
linearity tests.

Before we enter a discussion about the skewness
function as a test statistic, we will briefly review the class
of spectral and bispectral estimators most commonly
encountered. We will assume weak ergodicity, stationar-
ity up to the third order, unity sampling interval, and that
the power and bispectrum is to be estimated from a single
realization x½n� of length N of the time series. In the
following, X½k� ¼

PN�1
n¼0 x½n� expð�j2pkn=NÞ denotes the

discrete Fourier transform (DFT) of x½n�, where the index
k ¼ 0;1; . . . ;N � 1 corresponds to the discrete frequencies
k=N.

2.2.1. Frequency smoothing

Smoothing in the frequency and the bifrequency
domains is a simple and useful way to attain control over
the estimator variance. Our basic frequency smoothed
spectral and bispectral estimators are defined by

bS2½k� ¼
1

N

Xkþa

k0¼k�a

W2½k
0
�jX½k0�j2 (5)

bS3½k; l� ¼
1

N

Xkþa

k0¼k�a

Xlþa

l0¼l�a

W3½k
0; l0�X½k0�X½l0�X�½k0 þ l0� (6)

respectively, where W2½k� and W3½k; l� are uniform
smoothing windows and a is a smoothing bandwidth
parameter. The statistical properties of the power and
bispectral estimators depend strongly on the details of the
chosen smoothing windows, and on the chosen smoothing
bandwidth. For slowly varying power and bispectrum,
unbiased estimates can be obtained for properly normal-
ized smoothing windows. It is important to note that the
ideal shape of the bispectral smoothing window W3½k; l�

has a hexagonal region of support due to the fundamental
symmetry properties of the bispectrum [18,19].

If we choose not to smooth at all, i.e., a ¼ 0, the
estimators in Eq. (5) and (6) reduce to the well-known
periodogram and biperiodogram [20]. If we assume that
the time series is Gaussian, the periodogram and
biperiodogram are asymptotically unbiased, independent
and distributed as chi-square and complex Gaussian
random variables, respectively. Furthermore, the asymp-
totic variances of the periodogram and biperiodogram
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